設(shè)函數(shù),
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最值.
(Ⅰ)的單調(diào)遞增區(qū)間為, 單調(diào)遞減區(qū)間為;(Ⅱ)函數(shù)在區(qū)間上的最大值為 ,最小值為 .

試題分析:(Ⅰ)求函數(shù)的單調(diào)區(qū)間,它的解題方法有兩種:一是利用定義,二是導(dǎo)數(shù)法,本題由于是三次函數(shù),可用導(dǎo)數(shù)法求單調(diào)區(qū)間,只需求出的導(dǎo)函數(shù),判斷的導(dǎo)函數(shù)的符號,從而求出的單調(diào)區(qū)間;(Ⅱ)求函數(shù)在區(qū)間上的最值,求在區(qū)間上的最大值,此題屬于函數(shù)在閉區(qū)間上的最值問題,解此類題,只需求出極值,與端點(diǎn)處的函數(shù)值,比較誰大,就取誰,本題比較簡單,屬于送分題.
試題解析:(Ⅰ) ,  令    
的變化情況如下表:








0

0


單調(diào)遞增
極大值
單調(diào)遞減
極小值
單調(diào)遞增
由上表可知的單調(diào)遞增區(qū)間為, 單調(diào)遞減區(qū)間為
(Ⅱ)由(Ⅰ)可知函數(shù) 在 上單調(diào)遞增,在 上單調(diào)遞減,在 上單調(diào)遞增, 的極大值  , 的極小值  
 ,    函數(shù)在區(qū)間上的最大值為 ,最小值為 .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)設(shè),若上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)若,試討論的單調(diào)性;
(2)若對,總使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于的方程有實數(shù)解,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域為.
(I)求函數(shù)上的最小值;
(Ⅱ)對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=x3-4x+a,0<a<2.若f(x)的三個零點(diǎn)為x1,x2,x3,且x1<x2<x3,則(   )
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

處有極大值,則常數(shù)的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

=上是減函數(shù),則的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)的導(dǎo)函數(shù)則函數(shù)的單調(diào)遞減區(qū)間是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案