對于命題p:若|
a
|=|
b
|=2,
a
b
的夾角是
3
,則向量
b
a
方向上的投影是1;命題q:“x≤1”是“
1
x
≥1”的必要不充分條件,下列判斷正確的是(  )
A、¬q為假命題
B、¬p為假命題
C、“p∧q”是真命題
D、“p∨q”是假命題
考點(diǎn):復(fù)合命題的真假
專題:閱讀型
分析:根據(jù)向量
b
a
方向上的投影為|
b
|cos
a
b
判斷命題p的真假;根據(jù)
1
x
≥1?0<x≤1判斷命題q的真假,再根據(jù)復(fù)合命題真值表可得答案.
解答: 解:∵向量
b
a
方向上的投影為|
b
|cos
a
,
b
=2×(-
1
2
)=-1,∴命題p為假命題;
1
x
≥1?0<x≤1,∴“x≤1”是“
1
x
≥1”的必要不充分條件,命題q為真命題,
由復(fù)合命題真值表知:A正確.
故選:A.
點(diǎn)評:本題借助考查復(fù)合命題的真假判定,考查了向量的射影及充要條件的判定,熟練掌握向量的射影公式及充要條件的判定方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從集合A={1,2,3,4,5}任意取出兩個(gè)數(shù),這兩個(gè)數(shù)的和是偶數(shù)的概率是(  )
A、
3
10
B、
1
2
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:函數(shù)f(x)=ax-2b+2 對于任意的x∈[-1,1]恒有f(x)≥0,若對任意的一個(gè)實(shí)數(shù)a∈[-2,2],一個(gè)實(shí)數(shù) b∈[0,2],則滿足條件P的概率是( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,則“A=
π
6
”是“cosA=
3
2
”的(  )
A、充分必要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式a+2b+3>(
a
+2
b
)λ對任意正數(shù)a,b恒成立,則實(shí)數(shù)λ的取值范圍為( 。
A、(-∞,3)
B、(-∞,2)
C、(-∞,1)
D、(-∞,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(
x
3
+
π
6
)的圖象向左平移
π
4
個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A、g(x)=2sin(
x
3
+
π
4
)-1
B、g(x)=2sin(
x
3
-
π
4
)+1
C、g(x)=2sin(
x
3
-
π
12
)+1
D、g(x)=2sin(
x
3
-
π
12
)-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二元函數(shù)f(x,θ)=
xcosθ
x2+xsinθ+2
(x∈R,θ∈R),則f(x,θ)的最大值和最小值分別為( 。
A、
7
7
,-
7
7
B、
7
,-
7
7
C、2
2
,-2
2
D、2
2
,-
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上函數(shù)f(x)=
x+b
x2+ax+1
為奇函數(shù).
(Ⅰ)求a+b的值;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,
(1)求函數(shù)f(x)的單調(diào)減區(qū)間.
(2)設(shè)△ABC中,c=3,f(C)=0,若sin(A+C)=2sinA,求a、b的值.

查看答案和解析>>

同步練習(xí)冊答案