如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,∠, AB∥CD,AD=CD=2AB=2,E,F(xiàn)分別是PC,CD的中點.
(Ⅰ)證明:CD⊥平面BEF;
(Ⅱ)設(shè),
求k的值.
(Ⅰ)證明見解析(Ⅱ)
(Ⅰ)證明: .………………………2分
PA⊥平面ABCD,AD⊥CD. ……………………………………………3分
. ………………………………………5分
∴ CD⊥平面BEF. ……………………………………………………………………6分
(Ⅱ)連結(jié)AC且交BF于H,可知H是AC中點,連結(jié)EH,
由E是PC中點,得EH∥PA, PA⊥平面ABCD.
得EH⊥平面ABCD,且EH.…………………………………………8分
作HM⊥BD于M,連結(jié)EM,由三垂線定理可得EM⊥BD.
故∠EMH為二面角E—BD—F的平面角,故∠EMH=600.……………………10分
∵ Rt△HBM∽Rt△DBF,
故.
得, 得 .
在Rt△EHM中,
得 ………………………………………………………12分
解法2:(Ⅰ)證明,以A為原點,
建立如圖空間直角坐標(biāo)系.
則,,
設(shè)PA = k,則,
,.………………………………………………………2分
得.…………………………4分
有………………6分
(Ⅱ)…7分 .
設(shè)平面BDE的一個法向量,
則 得 取……………10分 由 ………………………………………11分
得 …………………12分
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com