如圖,在正四棱臺內(nèi),以小底為底面.大底面中心為頂點作一內(nèi)接棱錐.已知棱臺小底面邊長為b,大底面邊長為a,并且棱臺的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個棱錐的高,并指出有解的條件.

解:如圖,過高OO1和AD的中點E作棱錐和棱臺的截面,得棱臺的斜高EE1和棱錐的斜高為EO1,設(shè)OO1=h,∴

∵OO1E1E是直角梯形,其中
∴根據(jù)勾股定理得,
①式兩邊平方,把②代入得:
解得,即
顯然,由于a>0,b>0,所以此題當(dāng)且僅當(dāng)時才有解.
分析:這是棱臺與棱錐的組合體問題,也是立體幾何常見的問題,這類問題的圖形往往比較復(fù)雜,要認真分析各有關(guān)量的位置和大小關(guān)系,因為它們的各量之間的關(guān)系較密切,所以常引入方程、函數(shù)的知識去解.
點評:本題考查了在棱臺的問題中:如果與棱臺的斜高有關(guān),則常應(yīng)用通過高和斜高的截面,如果和棱臺的側(cè)棱有關(guān),則需要應(yīng)用通過側(cè)棱和高的截面,要熟悉這些截面中直角梯形的各元素,進而將這些元素歸結(jié)為直角三角形的各元素間的運算,這是解棱臺計算問題的基本技能之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱臺內(nèi),以小底為底面.大底面中心為頂點作一內(nèi)接棱錐.已知棱臺小底面邊長為b,大底面邊長為a,并且棱臺的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個棱錐的高,并指出有解的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱臺內(nèi),以小底為底面。大底面中心為頂點作一內(nèi)接棱錐. 已知棱臺小底面邊長為b,大底面邊長為a,并且棱臺的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個棱錐的高,并指出有解的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正四棱臺內(nèi),以小底為底面.大底面中心為頂點作一內(nèi)接棱錐.已知棱臺小底面邊長為b,大底面邊長為a,并且棱臺的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個棱錐的高,并指出有解的條件.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 
(14分)如圖,在正四棱臺內(nèi),以小底為底面。大底面中心為頂點作一內(nèi)接棱錐. 已知棱臺小底面邊長為b,大底面邊長為a,并且棱臺的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個棱錐的高,并指出有解的條件.

查看答案和解析>>

同步練習(xí)冊答案