已知數(shù)列的前項和

(Ⅰ)求;(Ⅱ)證明:

 

 

【答案】

 

【命題意圖】本試題主要考查數(shù)列基本公式的運用,數(shù)列極限和數(shù)列不等式的證明,考查考生運用所學(xué)知識解決問題的能力.

【參考答案】

   (I)

         

所以        

   (II)當n=1時,

時,

  

所以,當

【點評】2010年高考數(shù)學(xué)全國I、Ⅱ這兩套試卷都將數(shù)列題前置,一改往年的將數(shù)列結(jié)合不等式放縮法問題作為押軸題的命題模式,具有讓考生和一線教師重視教材和基礎(chǔ)知識、基本方法基本技能,重視兩綱的導(dǎo)向作用,也可看出命題人在有意識降低難度和求變的良苦用心.

估計以后的高考,對數(shù)列的考查主要涉及數(shù)列的基本公式、基本性質(zhì)、遞推數(shù)列、數(shù)列求和、數(shù)列極限、簡單的數(shù)列不等式證明等,這種考查方式還要持續(xù).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

已知數(shù)列的前項和為,若

(Ⅰ)求證是等差數(shù)列,并求出的表達式;

(Ⅱ) 若,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 已知數(shù)列的前項和為,且滿足

(1)證明:數(shù)列為等差數(shù)列;(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分13分)本題共有2個小題,第一個小題滿分5分,第2個小題滿分8分。

已知數(shù)列的前項和為,且,

(1)證明:是等比數(shù)列;

(2)求數(shù)列的通項公式,并求出n為何值時,取得最小值,并說明理由。

   (2)=  n=15取得最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省羅源縣第一中學(xué)高二上學(xué)期期中考試理科數(shù)學(xué) 題型:解答題

已知數(shù)列的前項和為,數(shù)列滿足:,前項和為,設(shè)。  (1)求數(shù)列的通項公式;
(2)是否存在自然數(shù)k, 當時,總有成立,若存在,求自然數(shù)的最小值。若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省山一中高三熱身練理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知數(shù)列的前項和,且滿足,則正整數(shù)_____

 

查看答案和解析>>

同步練習(xí)冊答案