精英家教網 > 高中數學 > 題目詳情
(2013•臨沂一模)已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={(x,y)|y=
1
x
};
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex-2}.
其中是“垂直對點集”的序號是( 。
分析:對于①利用漸近線互相垂直,判斷其正誤即可.對于②、③、④通過函數的定義域與函數的值域的范圍,畫出函數的圖象,利用“垂直對點集”的定義,即可判斷正誤;
解答:解:對于①y=
1
x
是以x,y軸為漸近線的雙曲線,漸近線的夾角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,滿足好集合的定義;在另一支上對任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立,所以不滿足“垂直對點集”的定義,不是“垂直對點集”.
對于②M={(x,y)|y=sinx+1},對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),滿足“垂直對點集”的定義,所以M是“垂直對點集”;正確.
對于③M={(x,y)|y=log2x},取點(1,0),曲線上不存在另外的點,使得兩點與原點的連線互相垂直,所以不是“垂直對點集”.
對于④M={(x,y)|y=ex-2},如下圖紅線的直角始終存在,對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,-1),則N(ln2,0),滿足“垂直對點集”的定義,所以是“垂直對點集”;正確.

所以②④正確.
故選D.
點評:本題考查“垂直對點集”的定義,利用對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,是本題解答的關鍵,函數的基本性質的考查,注意存在與任意的區(qū)別.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•臨沂一模)函數f(x)=ln
x
x-1
+x
1
2
的定義域為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂一模)定義在R上的偶函數f(x)對任意的x∈R有f(1+x)=f(1-x),且當x∈[2,3]時,f(x)=-x2+6x-9.若函數y=f(x)-logax在(0,+∞)上有四個零點,則a的值為
1
4
1
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂一模)如圖所示,在邊長為l的正方形OABC中任取一點P,則點P恰好取自陰影部分的概率為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂一模)已知實數x,y滿足不等式組
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若目標函數z=y-ax取得最大值時的唯一最優(yōu)解是(1,3),則實數a的取值范圍為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂一模)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點為A、B,離心率為
3
2
,直線x-y+l=0經過橢圓C的上頂點,點S是橢圓C上位于x軸上方的動點,直線AS,BS與直線l:x=-
10
3
分別交于M,N兩點.
(I)求橢圓C的方程;
(Ⅱ)求線段MN長度的最小值;
(Ⅲ)當線段MN長度最小時,在橢圓C上是否存在這樣的點P,使得△PAS的面積為l?若存在,確定點P的個數;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案