【題目】以下四個命題:
①對立事件一定是互斥事件;
②函數(shù)y=x+ 的最小值為2;
③八位二進制數(shù)能表示的最大十進制數(shù)為256;
④在△ABC中,若a=80,b=150,A=30°,則該三角形有兩解.
其中正確命題的個數(shù)為( )
A.4
B.3
C.2
D.1
【答案】C
【解析】解:對于①,由互斥事件和對立事件的概念知,對立事件一定是互斥事件,
互斥事件不一定是對立事件,①正確;
對于②,當x>0時,函數(shù)y=x+ 的最小值為2,
當x<0時,函數(shù)y=x+ 的最大值為﹣2,∴②錯誤;
對于③,八位二進制數(shù)能表示的最大十進制數(shù)是
1×20+1×21+1×22+…+1×27= =255,③錯誤;
對于④,如圖所示,△ABC中,a=80,b=150,A=30°,
∴C到AB的距離h=bsinA=75,由h<a<b,
得該三角形有兩解,④正確.
綜上,正確的命題為①④.
所以答案是:C.
【考點精析】通過靈活運用命題的真假判斷與應用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù) 是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c且acosB=4,bsinA=3.
(1)求tanB及邊長a的值;
(2)若△ABC的面積S=9,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知2sinA﹣cosB=2sinBcosC,且角B為鈍角.
(1)求角C的大。
(2)若a=2,b2+c2﹣a2= bc,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1中,點M是A1D1的中點,點N是CD的中點,用反證法證明直線BM與直線A1N是兩條異面直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,MCN是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為4 平方千米的三角形主題游戲樂園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(1)設AC=x,AB=y,用x表示y,并求y的最小值;
(2)設∠ACD=θ(θ為銳角),當AB最小時,用θ表示區(qū)域CDE的面積S,并求S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= .
(1)證明:數(shù)列{a2n﹣ }是等比數(shù)列;
(2)求a2n及a2n﹣1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= +ax,x>1.
(1)若函數(shù)f(x)在 處取得極值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有兩個不等實根,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com