已知數(shù)列{an}中,a1=-1,且(n+1)an,(n+2)an+1,n成等差數(shù)列.
(1)設(shè)bn=(n+1)an-n+2,求證:數(shù)列{bn}是等比數(shù)列.(2)求{an}的通項公式.
分析:(1)根據(jù)(n+1)a
n,(n+2)a
n+1,n成等差數(shù)列可知(n+2)a
n+1=
(n+1)a
n+
,把這一關(guān)系式代入
中,進而可推知
=
,進而可證明數(shù)列{b
n}是等比數(shù)列
(2)根據(jù)(1)中數(shù)列{b
n}是等比數(shù)列可求得數(shù)列{b
n}的通項公式,依據(jù)b
n=(n+1)a
n-n+2,進而可求{a
n}的通項公式.
解答:(1)證明:由已知得(n+2)a
n+1=
(n+1)a
n+
,
∵b
1=2a
1-1+2=-1,
∴
=
(n+2)an+1- (n+1)+2 |
(n+1)an- n+2 |
=
(n+1)an+-(n+1)+2 |
(n+1)an-n+2 |
=
=
∴數(shù)列{b
n}是等比數(shù)列
(2)由(1)得b
n=-(
)
n-1,即(n+1)a
n-n+2
=-(
)
n-1.
∴a
n=-
(
)
n-1+
.
點評:本題主要考查了等比關(guān)系的確定.判定的關(guān)鍵是看數(shù)列的每一項與前一項的比為同一個常數(shù).