在平面幾何里,已知的兩邊互相垂直,且,則邊上的高;現(xiàn)在把結(jié)論類比到空間:三棱錐的三條側(cè)棱兩兩相互垂直,平面,且,則點到平面的距離       

 

【答案】

          

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•新疆模擬)在平面幾何里,已知Rt△SAB的兩邊SA,SB互相垂直,且SA=a,SB=b,則AB邊上的高h=
ab
a2+b2
;現(xiàn)在把結(jié)論類比到空間:三棱錐S-ABC的三條側(cè)棱SA,SB,SC兩兩相互垂直,SH⊥平面ABC,且SA=a,SB=b,SC=c,則點S到平面ABC的距離h'=
abc
a2b2+b2c2+c2a2
abc
a2b2+b2c2+c2a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面幾何里,已知直角三角形ABC中,角C為90°,AC=b,BC=a,運用類比方法探求空間中三棱錐的有關(guān)結(jié)論:
有三角形的勾股定理,給出空間中三棱錐的有關(guān)結(jié)論:
在三棱錐O-ABC中,若三個側(cè)面兩兩垂直,則
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC
在三棱錐O-ABC中,若三個側(cè)面兩兩垂直,則
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC

若三角形ABC的外接圓的半徑為r=
a2+b2
2
,給出空間中三棱錐的有關(guān)結(jié)論:
在三棱錐O-ABC中,若三個側(cè)面兩兩垂直,且三條側(cè)棱長分別為a,b,c,則其外接球的半徑為r=
a2+b2+c2
2
在三棱錐O-ABC中,若三個側(cè)面兩兩垂直,且三條側(cè)棱長分別為a,b,c,則其外接球的半徑為r=
a2+b2+c2
2

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆海南瓊海嘉積中學高二上教學監(jiān)測(三)理科數(shù)學試卷(解析版) 題型:填空題

在平面幾何里,已知直角△SAB的兩邊SA,SB互相垂直,且,邊上的高; 拓展到空間,如圖,三棱錐的三條側(cè)棱SB、SB、SC兩兩相互垂直,且,則點到面的距離

 

查看答案和解析>>

科目:高中數(shù)學 來源:四川省成都外國語學校2011-2012學年高三2月月考(數(shù)學文). 題型:填空題

 在平面幾何里,已知的兩邊互相垂直,且,則邊上的高;現(xiàn)在把結(jié)論類比到空間:三棱錐的三條側(cè)棱兩兩相互垂直,平面,且,則點到平面的距離       

 

查看答案和解析>>

同步練習冊答案