2.已知tanα=2,則$\frac{3sinα+2cosα}{sinα-cosα}$的值為8.

分析 直接利用同角三角函數(shù)基本關(guān)系式化簡所求的表達(dá)式為正切函數(shù)的形式,然后求解即可.

解答 解:tanα=2,則$\frac{3sinα+2cosα}{sinα-cosα}$=$\frac{3tanα+2}{tanα-1}$=$\frac{6+2}{2-1}$=8.
故答案為:8

點(diǎn)評 本題考查三角函數(shù)化簡求值,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知α∈($\frac{3}{2}$π,2π),且cos(π+α)=-$\frac{1}{2}$,求tan(2π-α),sin(5π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不等式$\frac{1}{x-1}$+$\frac{2}{x-2}$≥$\frac{3}{2}$的解集,是總長為2的一些不相交的區(qū)間的并集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知△ABC中,內(nèi)角A,B,C所對邊長分別為a,b,c,若A=$\frac{π}{3}$,b=2acosB,c=1,
(1)求角B的大小.
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a∈R,函數(shù)f(x)=$\frac{1}{6}$x3+$\frac{1}{2}$(a-2)x2+b,g(x)=2alnx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處的切線互相垂直,求a,b的值;
(2)設(shè)F(x)=f′(x)-g(x),若對任意的x1,x2∈(0,+∞),且x1≠x2,都有$\frac{{F({x_1})-F({x_2})}}{{{x_1}-{x_2}}}$>a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△ABC中,已知AB=2,BC=4,∠B的平分線BD=$\sqrt{6}$,則AC邊上的中線BE=$\frac{\sqrt{31}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=x-1-$\frac{lnx}{x}$的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,則tan$\frac{C}{2}$的取值范圍為[$\frac{3}{4}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx-$\frac{{{x^2}-2x+1}}{2}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)x>1時,f(x)<x-1.

查看答案和解析>>

同步練習(xí)冊答案