已知拋物線C:y2=2px(p>0)的準線為l,焦點為F,圓M的圓心在x軸的正半軸上,且與y軸相切,過原點O作傾斜角為的直線n,交l于點A,交圓M于另一點B,且AO=BO=2

(1)求圓M和拋物線C的方程;

(2)若P為拋物線C上的動點,求的最小值;

(3)過l上的動點Q向圓M作切線,切點為S,T,求證:直線ST恒過一個定點,并求該定點的坐標.

答案:
解析:

  解:(1)易得,,設圓的方程為,

  將點代入得,所以圓的方程為

  點在準線上,從而,拋物線的方程為

  (2)由(1)得,設點,則

  得,

  所以

  因為,所以,即的最小值為

  (3)設點,過點的切線長為,則以為圓心,切線長為半徑的圓的方程為,

  即 、

  又圓的方程為,即  ②

  由①②兩式相減即得直線的方程:

  顯然上面直線恒過定點


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013年普通高等學校招生全國統(tǒng)一考試大綱卷理數(shù) 題型:013

已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若·=0,則k=

[  ]

A.

B.

C.

D.2

查看答案和解析>>

科目:高中數(shù)學 來源:河南省新鄭二中分校2009屆高三上學期模擬試卷(二)(數(shù)學理) 題型:044

已知拋物線C:y2=4x的焦點為F,過F作C的兩條互相垂直的弦AB、CD,設ABCD的中點分別為M、N

(Ⅰ)證明直線MN必過定點,并求出這點的坐標;

(Ⅱ)分別以AB、CD為直徑作圓,求兩圓相交弦的中點H的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:湖北省武漢市武昌區(qū)2012屆高三5月調(diào)研考試數(shù)學理科試題 題型:044

如圖,已知拋物線C:y2=4x,過點A(1,2)作拋物線C的弦AP,AQ.

(Ⅰ)若AP⊥AQ,證明直線PQ過定點,并求出定點的坐標;

(Ⅱ)假設直線PQ過點T(5,-2),請問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個數(shù)?如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山西省平遙縣高三4月質(zhì)檢理科數(shù)學試卷(解析版) 題型:選擇題

已知拋物線Cy2=4x的焦點為F,直線y=2x-4與C交于A,B兩點,則cos∠AFB=(   )

A.         B.           C.-       D.-

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

已知拋物線Cy2=2px(p>0)過點A(1,-2).

(1)求拋物線C的方程,并求其準線方程;

(2)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OAl的距離等于?若存在,求直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案