9.已知隨機(jī)變量ξ服從正態(tài)分布,且方程x2+2x+ξ=0有實數(shù)解得概率為$\frac{1}{2}$,若P(ξ≤2)=0.75,則P(0≤ξ≤2)=0.5.

分析 根據(jù)隨機(jī)變量ξ服從正態(tài)分布,且方程x2+2x+ξ=0有實數(shù)解的概率為$\frac{1}{2}$,知正態(tài)曲線的對稱軸是x=1,欲求P(0≤ξ≤2),只須依據(jù)正態(tài)分布對稱性,即可求得答案.

解答 解:∵方程x2+2x+ξ=0有實數(shù)解的概率為$\frac{1}{2}$,
∴P(△≥0)=$\frac{1}{2}$,
即P(ξ≥1)=$\frac{1}{2}$,
故正態(tài)曲線的對稱軸是:x=1,如圖
∵P(ξ≤2)=0.75,
∴P(ξ≤0)=0.25,
∴P(0≤ξ≤2)=1-(0.25+0.25)=0.5.
故答案為:0.5.

點評 本小題主要考查正態(tài)分布曲線的特點及曲線所表示的意義、概率的基本性質(zhì)、方程有解的條件等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2x+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[$\begin{array}{l}{-\frac{π}{4}$,$\frac{π}{4}}\end{array}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某創(chuàng)業(yè)團(tuán)隊擬生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場預(yù)測,A產(chǎn)品的利潤與投資額成正比(如圖1),B產(chǎn)品的利潤與投資額的算術(shù)平方根成正比(如圖2).(注:利潤與投資額的單位均為萬元)
(1)分別將A、B兩種產(chǎn)品的利潤f(x)、g(x)表示為投資額x的函數(shù);
(2)該團(tuán)隊已籌到10萬元資金,并打算全部投入A、B兩種產(chǎn)品的生產(chǎn),問:當(dāng)B產(chǎn)品的投資額為多少萬元時,生產(chǎn)A、B兩種產(chǎn)品能獲得最大利潤,最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知tanα=$\frac{1}{7}$,cosβ=$\frac{3}{{\sqrt{10}}}$,且α,β都是銳角,則α+2β=arctan$\frac{13}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知集合M={x|$\sqrt{x-1}$>1},N={y|y=x+1,x≥-1},M∩N=(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖:在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求證:平面ACE⊥平面CDE;
(2)在線段DE上是否存在一點F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.四棱錐P-ABCD中,點P在平面ABCD內(nèi)的射影H在棱AD上,PA⊥PD,底面ABCD是梯形,BC∥AD,AB⊥AD,且AB=BC=1,AD=2.
(1)求證:平面PAB⊥平面PAD;
(2)若直線AC與PD所成角為60°,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,側(cè)面PAD為等邊三角形,底面ABCD為菱形,且∠DAB=$\frac{π}{3}$.
(I)求證:PB⊥AD;
(Ⅱ)求直線PC與平面PAB所成的角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.冪函數(shù)f(x)=(m2-4m+4)x${\;}^{{m^2}-6m+8}}$在(0,+∞)為增函數(shù),則m的值為( 。
A.1或3B.1C.3D.2

查看答案和解析>>

同步練習(xí)冊答案