已知A、B、C是直線l上的不同的三點(diǎn),O是直線外一點(diǎn),向量
OA
、
OB
、
OC
滿足
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式;
(2)若x∈[
1
6
,
1
3
]
a>ln
1
3
,證明:不等式|a-lnx|>ln[f′(x)-3x]成立;
(3)若關(guān)于x的方程f(x)=2x+b在[0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.
(1)由題意,
OA
=(
3
2
x2+1)•
OB
+[ln(2+3x)-y]•
OC

∵A、B、C三點(diǎn)共線,
3
2
x2+1+ln(2+3x)-y=1

y=
3
2
x2+ln(2+3x)

(2)∵x∈[
1
6
,
1
3
]
a>ln
1
3
,則a>lnx
又由(1)得,f/(x)=
3
2+3x
+3x
,x∈[
1
6
1
3
]
,則f/(x)-3x=
3
2+3x
>0

∴要證原不等式成立,只須證:a>lnx+ln
3
2+3x
(*)
設(shè)h(x)=lnx+ln
3
2+3x
=ln
3x
2+3x

h/(x)=
2+3x
3x
3(2+3x)-3x•3
(2+3x)2
=
2
x(2+3x)
>0

∴h(x)在x∈[
1
6
1
3
]
上均單調(diào)遞增,則h(x)有最大值h(
1
3
)=ln
1
3

又因?yàn)?span mathtag="math" >a>ln
1
3
,所以a>h(x)在x∈[
1
6
1
3
]
恒成立.
∴不等式(*)成立,即原不等式成立.
(3)方程f(x)=2x+b即
3
2
x2-2x+ln(2+3x)=b
,令?(x)=
3
2
x2-2x+ln(2+3x)
,
?/(x)=
3
2+3x
+3x-2=
9x2-1
2+3x
=
(3x+1)(3x-1)
2+3x

當(dāng)x∈(0,
1
3
)
時(shí),?′(x)<0,?(x)單調(diào)遞減,
當(dāng)x∈(
1
3
,1)
時(shí),?′(x)>0,?(x)單調(diào)遞增,
∴?(x)有極小值為?(
1
3
)
=ln3-
1
2
即在[0,1]上的最小值.
又?(0)=ln2,?(1)=ln5-
1
2
,又ln5-
1
2
-ln2=ln
5
2
e
=
1
2
ln
25
4e
1
2
ln
25
4×3
>0

∴l(xiāng)n5-
1
2
>ln2.
∴要使原方程在[0,1]上恰有兩個(gè)不同實(shí)根,必須使ln3-
1
2
<b≤
ln2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是直線l上的不同三點(diǎn),O是l外一點(diǎn),向量
OA
,
OB
,
OC
滿足
OA
=(
3
2
x2+1)
OB
-(lnx-y)
OC
,記y=f(x);
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、已知a、b、c是直線,α是平面,給出下列命題:
①若a∥b,b⊥c,則a⊥c;②若a⊥b,b⊥c,則a∥c;
③若a∥α,b?α,則a∥b;④若a⊥α,b?α,則a⊥b;
⑤若a與b異面,則至多有一條直線與a、b都垂直.
其中真命題是
①④
.(把符合條件的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是直線l上不同的三點(diǎn),O是l外一點(diǎn),向量
OA
,
OB
,
OC
滿足:
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
.記y=f(x).
(Ⅰ)求函數(shù)y=f(x)的解析式:
(Ⅱ)若對(duì)任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍:
(Ⅲ)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c是直線,β是平面,給出下列命題:
①若a⊥b,b⊥c,則a∥c;
②若a∥b,b⊥c,則a⊥c;
③若a∥β,a?α,α∩β=b則a‖b;
④若a與b異面,且a∥β,則b與β相交;
其中真命題的序號(hào)是
②③
②③
.(要求寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是直線l上的不同的三點(diǎn),O是外一點(diǎn),則向量
OA
、
OB
、
OC
滿足:
OA
OB
OC
,其中λ+μ=1.
(1)若A、B、C三點(diǎn)共線且有
OA
-(3x+1)•
OB
-(
3
2+3x
-y)•
OC
=
0
成立.記y=f(x),求函數(shù)y=f(x)的解析式;
(2)若對(duì)任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案