如圖,橢圓的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1(a>b>0)
,P為橢圓上的一點(diǎn),且滿足PF1⊥PF2,
(1)求三角形PF1F2的面積.
(2)若此橢圓長(zhǎng)軸為8,離心率為
3
2
,求點(diǎn)P的坐標(biāo).
分析:(1)利用直角三角形的勾股定理及橢圓的定義得到關(guān)于|PF1|,|PF2|的方程,求出|PF1|•|PF2|的值,利用直角三角形的面積公式求出△PF1F2的面積.
(2)由題知:a=4,得出橢圓的標(biāo)準(zhǔn)方程,再根據(jù)PF⊥PF2得到P為以F1F2為直徑的圓上,兩者結(jié)合組成方程組求解即可得點(diǎn)P的坐標(biāo).
解答:解:(1)根據(jù)橢圓的定義,得|PF1|+|PF2|=2a,平方得|PF1|2+2|PF1||PF2|+|PF2|2=4a2
又PF⊥PF2∴|PF1|2+|PF2|2=4c2
∴|PF1||PF2|=2b2
∴S=
1
2
|PF1||PF2|=b2…7′.
(2)由a=4,
c
a
=
3
2
得b2=4  ….9′
∴橢圓的標(biāo)準(zhǔn)方程為
x2
16
+
y2
4
=1  …..10′
由PF⊥PF2∴P為以F1F2為直徑的圓上.….13′
x2
16
+
y2
4
=1  ①x2+y2=12  ②
聯(lián)列方程組 得x=±
2
3
3
y=±
4
6
3

∴點(diǎn)P的坐標(biāo):P1
2
3
3
,
4
6
3
)   P2(-
2
3
3
,
4
6
3
)  
 P3(-
2
3
3
,-
4
6
3
)    P4
2
3
3
,-
4
6
3
)….15′
點(diǎn)評(píng):本題考查橢圓的定義、橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,以及用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程的方法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)為A(0,
2
),且離心率等于
3
2
,過(guò)點(diǎn)M(0,2)且斜率為k的直線l與橢圓相交于P,Q不同兩點(diǎn)(與點(diǎn)B不重合),橢圓與x軸的正半軸相交于點(diǎn)B.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若
PB
QB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城模擬)(本題文科學(xué)生做)如圖,在平面直角坐標(biāo)系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點(diǎn)P、Q.
(Ⅰ)當(dāng)t=3時(shí),求以F1,F(xiàn)2為焦點(diǎn),且過(guò)PQ中點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)Q作直線QR∥AF1交F1F2于點(diǎn)R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過(guò)異于點(diǎn)F1的一個(gè)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的標(biāo)準(zhǔn)方程為數(shù)學(xué)公式,P為橢圓上的一點(diǎn),且滿足PF1⊥PF2,
(1)求三角形PF1F2的面積.
(2)若此橢圓長(zhǎng)軸為8,離心率為數(shù)學(xué)公式,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省重點(diǎn)高中高二(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,橢圓的標(biāo)準(zhǔn)方程為,P為橢圓上的一點(diǎn),且滿足PF1⊥PF2,
(1)求三角形PF1F2的面積.
(2)若此橢圓長(zhǎng)軸為8,離心率為,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案