一個球與一個正三棱柱的三個側(cè)面和兩個底面都相切,已知這個三棱柱的體積是數(shù)學公式,則這個球的體積是________.


分析:底面正三角形的內(nèi)切圓的半徑為球的半徑,正三棱柱的高為球的直徑,從而可得正三角形的邊長為2r,利用三棱柱的體積是,求得球的半徑,即可球的體積.
解答:由題意,底面正三角形的內(nèi)切圓的半徑為球的半徑,正三棱柱的高為球的直徑
設(shè)球的半徑為r,則正三角形的邊長為2r
∴三棱柱的體積是,
∴r=2
∴球的體積是=
故答案為:
點評:本題考查球的體積,解題的關(guān)鍵是確定球的半徑,正確運用球的體積公式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是
32π
3
,則這個三棱柱的體積是( 。
A、96
3
B、16
3
C、24
3
D、48
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是
32π3
,則這個三棱柱的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個球與一個正三棱柱的三個側(cè)面和兩個底面都相切,已知這個三棱柱的體積是48
3
,則這個球的體積是
32
3
π
32
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•朝陽區(qū)二模)一個球與一個正三棱柱的三個側(cè)面和兩個底面都相切,已知這個球的體積是
32
3
π
,那么這個球的半徑是
2
2
,三棱柱的體積是
48
3
48
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個球與一個正三棱柱的三個側(cè)面和兩個底面都相切,若這個球的表面積為12π,則這個正三棱柱的體積為
54
54

查看答案和解析>>

同步練習冊答案