等差數(shù)列{an}中S9=-36,S13=-104,等比數(shù)列{bn}中b5=a5,b7=a7,則b6=( 。
分析:等差數(shù)列{an}中,S9=
9
2
(a1+a9)
=9a5=-36,S13=
13
2
(a1+a13)
=13a7=-104,等比數(shù)列{bn}中b5=a5,b7=a7,b5=a5=-4,b7=a7=-8,由此能求出b6
解答:解:∵等差數(shù)列{an}中,S9=
9
2
(a1+a9)
=9a5=-36,
S13=
13
2
(a1+a13)
=13a7=-104,
等比數(shù)列{bn}中b5=a5,b7=a7
∴b5=a5=-4,
b7=a7=-8,
b1q4=-4
b1q6=-8
,
解得b1=-1,q=±
2
,
b6=b1q54
2

故選A.
點評:本題考查等差數(shù)列、等比數(shù)列的基本量、通項,結(jié)合含兩個變量的不等式的處理問題,有一定的探索性.綜合性強,難度大,是高考的重點.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,當ar=as(r≠s)時,{an}必定是常數(shù)數(shù)列.然而在等比數(shù)列{an}中,對某些正整數(shù)r、s(r≠s),當ar=as時,非常數(shù)數(shù)列{an}的一個例子是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公差不為0的等差數(shù)列{an}中,a1=2,a2是a1與a4的等比中項.
(I)求數(shù)列{an}的公差d;
(II)記數(shù)列{an}的前20項中的偶數(shù)項和為S,即S=a2+a4+a6+…+a20,求S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a8=8,則
S
 
15
的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若am=p,an=q(m,n∈N*,n-m≥1),則am+n=
nq-mp
n-m
.類比上述結(jié)論,對于等比數(shù)列{bn}(bn>0,n∈N*),若bm=r,bn=s(n-m≥2,m,n∈N*),則可以得到bm+n=
n-m
sn
rm
n-m
sn
rm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)一模)在等差數(shù)列{an}中,公差為d,前n項和為Sn.在等比數(shù)列{bn}中,公比為q,前n項和為S'n(n∈N*).
(1)在等差數(shù)列{an}中,已知S10=30,S20=100,求S30
(2)在等差數(shù)列{an}中,根據(jù)要求完成下列表格,并對①、②式加以證明(其中m、m1、m2、n∈N*).
用Sm表示S2m S2m=2Sm+m2d
Sm1、Sm2表示Sm1+m2 Sm1+m2=
Sm1+Sm2+m1m2d
Sm1+Sm2+m1m2d
用Sm表示Snm Snm=
nSm+
n(n-1)
2
m2d
nSm+
n(n-1)
2
m2d
(3)在下列各題中,任選一題進行解答,不必證明,解答正確得到相應的分數(shù)(若選做二題或更多題,則只批閱其中分值最高的一題,其余各題的解答,不管正確與否,一律視為無效,不予批閱):
(。 類比(2)中①式,在等比數(shù)列{bn}中,寫出相應的結(jié)論.
(ⅱ) (解答本題,最多得5分)類比(2)中②式,在等比數(shù)列{bn}中,寫出相應的結(jié)論.
(ⅲ) (解答本題,最多得6分)在等差數(shù)列{an}中,將(2)中的①推廣到一般情況.
(ⅳ) (解答本題,最多得6分)在等比數(shù)列{bn}中,將(2)中的①推廣到一般情況.

查看答案和解析>>

同步練習冊答案