【題目】某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:

記某企業(yè)每天由空氣污染造成的經(jīng)濟損失T(單位:元),空氣質(zhì)量指數(shù)API.在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)API150時造成的經(jīng)濟損失為200元,當(dāng)API200時,造成的經(jīng)濟損失為400元);當(dāng)API大于300時造成的經(jīng)濟損失為2000.

(1)試寫出函數(shù)T()的表達式:

(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失大于200元且不超過600元的概率;

(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認為該市本年空氣重度污染與供暖有關(guān).

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1) (2) (3)列聯(lián)表見解析,有95%的把握認為空氣重度污染與供暖有關(guān)

【解析】試題分析:(1)根據(jù)在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)API為150時造成的經(jīng)濟損失為500元,當(dāng)API為200時,造成的經(jīng)濟損失為700元);當(dāng)API大于300時造成的經(jīng)濟損失為2000元,可得函數(shù)關(guān)系式;

(2)由200<S≤600,得150<x≤250,頻數(shù)為33,即可求出概率;

(3)根據(jù)所給的數(shù)據(jù),列出列聯(lián)表,根據(jù)所給的觀測值的公式,代入數(shù)據(jù)做出觀測值,同臨界值進行比較,即可得出結(jié)論.

試題解析:

(1)根據(jù)題意,在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;

在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)API為150時造成的經(jīng)濟損失為200元,當(dāng)API為200時,造成的經(jīng)濟損失為400元);

當(dāng)API大于300時造成的經(jīng)濟損失為2000元,

(2)設(shè)“在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失大于200元且不超過600元”為事件A,

設(shè)“在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元”為事件A;

由200<S≤600,得100<x≤175,頻數(shù)為33,

P(A)=;

(3)根據(jù)統(tǒng)計數(shù)據(jù)得到如下列聯(lián)表:

非重度污染

重度污染

合計

供暖季

22

8

30

非供暖季

63

7

70

合計

85

15

100

觀測值 ,所以有95%的把握認為空氣重度污染與供暖有關(guān)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=

1)若,函數(shù)的圖像與函數(shù)的圖像相切,求的值

2)若, ,函數(shù)滿足對任意x1x2),都有恒成立,求的取值范圍;

3)若,函數(shù)=f(x)+ g(x),G()有兩個極值點x1,x2,其中x1,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進行射擊比賽,各射擊局,每局射擊次,射擊命中目標得分,未命中目標得分,兩人局的得分情況如下:

)若從甲的局比賽中,隨機選取局,求這局的得分恰好相等的概率.

)如果,從甲、乙兩人的局比賽中隨機各選取局,記這局的得分和為,求的分布列和數(shù)學(xué)期望.

)在局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為橢圓 的右焦點, , 為橢圓的下、上、右三個頂點, 的面積之比為.

(1)求橢圓的標準方程;

(2)試探究在橢圓上是否存在不同于點, 的一點滿足下列條件:點軸上的投影為, 的中點為,直線交直線于點, 的中點為,且的面積為.若不存在,請說明理由;若存在,求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:

①將 , 三種個體按3:1:2的比例分層抽樣調(diào)查,若抽取的個體為12個,則樣本容量為30;

②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、中位數(shù)相同;

③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;

④統(tǒng)計的10個樣本數(shù)據(jù)為95,105,114,116,120,120,122,125,130,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4.

其中真命題為( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,的中點,是等腰三角形,的中點,上一點.

I)若平面,求;

II)平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),將的圖象向左平移個單位長度后得到的圖象,且在區(qū)間內(nèi)的最大值為.

(1)求實數(shù)的值;

(2)在中,內(nèi)角, , 的對邊分別是 , ,若,且,求的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在分以下的學(xué)生后, 共有男生名,女生名,現(xiàn)采用分層抽樣的方法,從中抽取了名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為組, 得到如下頻數(shù)分布表.

)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,能否判斷數(shù)學(xué)成績與性別有關(guān);

)規(guī)定分以上為優(yōu)分(含分),請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有%以上的把握認為“數(shù)學(xué)成績與性別有關(guān)”,( ,其中

查看答案和解析>>

同步練習(xí)冊答案