給出下列四個判斷:
①若向量、是兩個單位向量,則;
②在△ABC中,
③若非零向量、滿足,則;
④已知向量、為非零向量,若,則;
其中正確的是    .(填入所有正確的序號)
【答案】分析:若向量是兩個單位向量,則=1,成立;在△ABC中,,成立;若非零向量、滿足,當向量、同向時,;當向量、反向時,不成立.故③不成立;已知向量、為非零向量,若,則不成立.
解答:解:①若向量、是兩個單位向量,則||=1,||=1,∴,故①成立;
②在△ABC中,,成立;
③若非零向量、滿足,當向量、同向時,;當向量、反向時,不成立.故③不成立;
④已知向量為非零向量,若,則不成立.;
故答案為:①②.
點評:本題考查命題的真假判斷和應用,解題時要認真審題,仔細解答,注意挖掘隱含條件.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列四個判斷:
①定義在R上的奇函數(shù)f(x),當x>0時f(x)=x2+2,則函數(shù)f(x)的值域為{y|y≥2或y≤-2};
②若不等式x3+x2+a<0對一切x∈[0,2]恒成立,則實數(shù)a的取值范圍是{a|a<-12};
③當f(x)=log3x時,對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

④設g(x)表示不超過t>0的最大整數(shù),如:[2]=2,[1.25]=1,對于給定的n∈N+,定義
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當x∈[
3
2
,2)時函數(shù)
C
x
8
的值域是(4,
16
3
]
;
上述判斷中正確的結論的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=(x2-2x-3)ex,給出下列四個判斷:
①f(x)<0的解集是{x|-1<x<3};
②f(x)有極小值也有極大值;
③f(x)無最大值,也無最小值;
④f(x)有最大值,無最小值.
其中判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x,x∈P
-x,x∈M
其中P,M為實數(shù)集R的兩個非空子集,又規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.給出下列四個判斷其中正確的序號為
②④
②④

①若P∩M=∅,則f(P)∩f(M)=∅;   
②若P∩M≠∅,則f(P)∩f(M)≠∅;
③若P∪M=R,則f(P)∪f(M)=R;  
④若P∪M≠R,則f(P)∪f(M)≠R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
13
)x-log2x
,0<a<b<c,f(a)f(b)f(c)<0,實數(shù)d是函數(shù)f(x)的一個零點.給出下列四個判斷:①d<a;②d>b;③d<c;④d>c.其中可能成立的序號是
①②③
①②③
.(把你認為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x,x∈P
-x,x∈M
其中P,M為實數(shù)集R的兩個非空子集,規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.給出下列四個判斷:
①若P∩M=∅,則f(P)∩f(M)=∅;②若P∩M≠∅,則f(P)∩f(M)≠∅;③若P∪M=R,則f(P)∪f(M)=R; ④若P∪M≠R,則f(P)∪f(M)≠R.
其中判斷不正確的有
 

查看答案和解析>>

同步練習冊答案