【題目】如圖,在矩形ABCD中,AB=2BC=2,點(diǎn)MDC的中點(diǎn),將△ADM沿AM折起,使得平面△ADM⊥平面ABCM

1)求證:ADBM;

2)求點(diǎn)C到平面BDM的距離.

【答案】(1)見解析(2)

【解析】

1)取AM中點(diǎn)O,連結(jié)DO,可得DOBMAMBM,MB⊥平面ADM,即可得BMAD;

2,記點(diǎn)C到平面BDM的距離為hVCBDM,又VD-BCM=VC-BDM,即可得點(diǎn)C到平面BDM的距離.

1)取AM中點(diǎn)O,連結(jié)DO,

因?yàn)槠矫?/span>ADM⊥平面ABCMAD=DM,

所以OD⊥平面ABCMDOBM,

易知AMBM

所以MB⊥平面ADM,

所以BMAD

2)∵在矩形ADCB中,AB=2BC=2,點(diǎn)MDC的中點(diǎn),

DM=CM=,BM=AM==,DO=

由(1)知MB⊥平面ADM,DM平面ADM

BMDM,SBDM=.,

又∵DO⊥平面ABCM,

×=.,

記點(diǎn)C到平面BDM的距離為h,

VC-BDM,

又∵VD-BCM=VC-BDM

,解得h=,

∴點(diǎn)C到平面BDM的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從年高考開始,高考物理、化學(xué)等六門選考科目的考生原始成績從高到低劃分為八個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為.選考科目成績計(jì)入考生總成績時,將等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.

某校級學(xué)生共人,以期末考試成績?yōu)樵汲煽冝D(zhuǎn)換了本校的等級成績,為學(xué)生合理選科提供依據(jù),其中物理成績獲得等級的學(xué)生原始成績統(tǒng)計(jì)如下

成績

93

91

90

88

87

86

85

84

83

82

人數(shù)

1

1

4

2

4

3

3

3

2

7

(1)求物理獲得等級的學(xué)生等級成績的平均分(四舍五入取整數(shù));

(2)從物理原始成績不小于分的學(xué)生中任取名同學(xué),求名同學(xué)等級成績不相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=Asin(ωx+)(A0,ω>0,||)的部分圖象如圖所示.

(Ⅰ)求fx)的解析式;

(Ⅱ)若對于任意的x[0m],fx)≥1恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為為參數(shù)),交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)點(diǎn);若、成等比數(shù)列,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定義為兩點(diǎn)AB的“切比雪夫距離”,又設(shè)點(diǎn)P上任意一點(diǎn)Q,的最小值為點(diǎn)P到直線的“切比雪夫距離”,記作,給出下列三個命題:

①對任意三點(diǎn)AB、C,都有

②已知點(diǎn)P(2,1)和直線,

③定點(diǎn)動點(diǎn)P滿足則點(diǎn)P的軌跡與直線(為常數(shù))有且僅有2個公共點(diǎn).

其中真命題的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),曲線C2的方程為(x-12+y-12=2

1)在以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C1,C2的極坐標(biāo)方程;

2)直線θ=β(0<β<π)與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,底面是正三角形,側(cè)棱底面.D,E分別是邊BC,AC的中點(diǎn),線段交于點(diǎn)G,且,

(1)求證:∥平面;

(2)求證:⊥平面;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于集合,,.集合中的元素個數(shù)記為.規(guī)定:若集合滿足,則稱集合具有性質(zhì)

(I)已知集合,,寫出,的值;

(II)已知集合,為等比數(shù)列,,且公比為,證明:具有性質(zhì)

(III)已知均有性質(zhì),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計(jì)總體概率,解答下列問題:

假設(shè)每年的梅雨季節(jié)天氣相互獨(dú)立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.

老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量與降雨量之間的關(guān)系如下面統(tǒng)計(jì)表所示,又知乙品種楊梅的單位利潤為,請你幫助老李分析,他來年應(yīng)該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.

降雨量

畝產(chǎn)量

500

700

600

400

查看答案和解析>>

同步練習(xí)冊答案