11.已知f(x)=|x-a|是(1,+∞)上的單調(diào)遞增函數(shù),則實數(shù)a的取值范圍是(-∞,1].

分析 畫出函數(shù)的圖象,利用已知條件轉(zhuǎn)化求解即可.

解答 解:f(x)=|x-a|的圖象如圖:
f(x)=|x-a|是(1,+∞)上的單調(diào)遞增函數(shù),
可得則實數(shù)a的取值范圍是:(-∞,1].
故答案為:(-∞,1]

點評 本題考查函數(shù)的圖象的應(yīng)用,函數(shù)的單調(diào)性的判斷,考查數(shù)形結(jié)合以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對于任意的實數(shù)x,都有f(x)=4x2-f(-x),當(dāng)x∈(-∞,0)時,f′(x)<4x,若f(m+1)≤f(-m)+4m+2,則實數(shù)m的取值范圍是( 。
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,A,B為銳角,且cos 2A=$\frac{3}{5}$,sin B=$\frac{\sqrt{10}}{10}$,求角C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為$ρ=2\sqrt{2}sin(θ+\frac{π}{4})$,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)),直線l與曲線C1交于A,B兩點.
(Ⅰ)求|AB|的長度;
(Ⅱ)若曲線C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+\sqrt{2}cosα}\\{y=4+\sqrt{2}sinα}\end{array}}\right.$(α為參數(shù)),P為曲線C2上的任意一點,求△PAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓心在直線y=x+4上,半徑為$2\sqrt{2}$的圓經(jīng)過原點O.
(1)求圓C的方程;
(2)求經(jīng)過點(0,2),且被圓C截得弦長為4的直線的方程;
(3)設(shè)直線l:y=x+m,當(dāng)m為何值時,直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若數(shù)列{an}滿足an-2an+1+an+2=0(n∈N*),且a1=2,a2=4,則數(shù)列{an}的通項公式為an=2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)集合A為函數(shù)y=lg$\frac{1+x}{2-x}$的定義域,集合B為不等式(ax-1)(x+2)≥0(a>0)的解集.
(1)若a=1,求A∩B;
(2)若B⊆∁RA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.方程3sinx=1+cos2x的解集為$\{x|x=kπ+{(-1)^k}•\frac{π}{6}\},k∈Z$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的最大值為2$\sqrt{2}$,最小值為-$\sqrt{2}$,周期為π,且圖象過(0,-$\frac{\sqrt{2}}{4}$).
(1)求函數(shù)f(x)的解析式,函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)若方程f(x)=a在$[0,\frac{7π}{12}]有兩根α、β,求α+β的值及a的取值范圍$.

查看答案和解析>>

同步練習(xí)冊答案