若函數(shù)f(x)滿足f(n)=
2
 ,n=1
3f(n-1)
 ,n≥2
,則f(3)=
18
18
分析:對于分段函數(shù),要看自變量是屬于給出的哪個區(qū)間,進(jìn)而代入相應(yīng)的解析式,即可求出答案.
解答:解:∵3>2,∴f(3)=3f(2);
∵2=2,∴f(2)=3f(1);
∵f(1)=2,∴f(3)=3×3×2=18.
故答案為18.
點評:理解分段函數(shù)在不同的區(qū)間內(nèi)的對應(yīng)法則不同是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測數(shù)學(xué)試卷 (理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省洛陽一中高三(上)期中數(shù)學(xué)考前選擇題強(qiáng)化訓(xùn)練(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測數(shù)學(xué)試卷 (文科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省湘西州邊城高級中學(xué)高三(上)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省湘西州古丈縣補(bǔ)習(xí)學(xué)校高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步練習(xí)冊答案