已知函數(shù)f(x)=-x3+3x.
(1)判斷f(x)的奇偶性,證明你的結(jié)論;
(2)當a在何范圍內(nèi)取值時,關(guān)于x的方程f(x)=a在x∈(-1,1]上有解?
【答案】分析:(1)根據(jù)已知中f(x)=-x3+3x.求出f(-x),并判斷f(-x)與f(x)的關(guān)系,然后根據(jù)函數(shù)奇偶性的性質(zhì)得到函數(shù)的奇偶性,
(2)用定義法,先在定義域上任取兩個變量,且界定大小,再作差變形看符號.當自變量變化與函數(shù)值變化一致時,為增函數(shù);當自變量變化與函數(shù)值變化相反時,為減函數(shù),得出f(x)在(-1,1]上是增函數(shù),從而函數(shù)f(x)=-x3+3x的值域是(-2,2],即可得到答案.
解答:解:(1)證明:顯然f(x)的定義域是R.設(shè)x∈R,
∵f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),
∴函數(shù)f(x)是奇函數(shù).
(2)解:設(shè)-1<x1<x2≤1,則f(x1)-f(x2)=(-x13+3x1)-(-x23+3x2)=(x1-x2)[3-(x12+x1x2+x22)]
∵x1<x2,3-(x12+x1x2+x22)>0
∴f(x1)-f(x2)<0,
∴f(x)在(-1,1]上是增函數(shù).
∴函數(shù)f(x)=-x3+3x的值域是(-2,2].
∴當a在(-2,2]內(nèi)取值時,關(guān)于x的方程f(x)=a在x∈(-1,1]上有解.
點評:本題考查的知識點是函數(shù)奇偶性與單調(diào)性的綜合,其中熟練掌握函數(shù)單調(diào)性與奇偶性的定義及性質(zhì)是解答本題的關(guān)鍵.