【題目】已知項數(shù)為的數(shù)列滿足如下條件:①;②若數(shù)列滿足其中則稱為的“伴隨數(shù)列”.
(I)數(shù)列是否存在“伴隨數(shù)列”,若存在,寫出其“伴隨數(shù)列”;若不存在,請說明理由;
(II)若為的“伴隨數(shù)列”,證明:;
(III)已知數(shù)列存在“伴隨數(shù)列”且求的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點為正方形邊上異于點,的動點,將沿翻折成,在翻折過程中,下列說法正確的是( )
A.存在點和某一翻折位置,使得
B.存在點和某一翻折位置,使得平面
C.存在點和某一翻折位置,使得直線與平面所成的角為45°
D.存在點和某一翻折位置,使得二面角的大小為60°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)若f(x)存在極值點x0,且f(x1)= f(x0),其中x1≠x0,求證:x1+2x0=3;
(Ⅲ)設a>0,函數(shù)g(x)= |f(x)|,求證:g(x)在區(qū)間[0,2]上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證:++≥3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負半軸為極軸建極坐標系,直線的極坐標方程為
(Ⅰ)求的極坐標方程;
(Ⅱ)射線與圓C的交點為與直線的交點為,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(0<p<8)的焦點為F點Q是拋物線C上的一點,且點Q的縱坐標為4,點Q到焦點的距離為5.
(1)求拋物線C的方程;
(2)設直線l不經過Q點且與拋物線交于A,B兩點,QA,QB的斜率分別為K1,K2,若K1K2=﹣2,求證:直線AB過定點,并求出此定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),其前n項的積為,記,.
(1)若數(shù)列為等比數(shù)列,數(shù)列為等差數(shù)列,求數(shù)列的公比.
(2)若,,且
①求數(shù)列的通項公式.
②記,那么數(shù)列中是否存在兩項,(s,t均為正偶數(shù),且),使得數(shù)列,,,成等差數(shù)列?若存在,求s,t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)在進入“互聯(lián)網+”時代,大學生小張自己開了一家玩具店,他通過“互聯(lián)網+”銷售某種玩具,經過一段時間對一種玩具的銷售情況進行統(tǒng)計,得5數(shù)據(jù)如下:
假定玩具的銷售量(百個)與玩具的銷售價價格(元)之間存在相關關系:
銷售量(百個) | 2 | 3 | 4 | 5 | 6 | 8 |
單個玩具的銷售價(元) | 5.5 | 4.3 | 3.9 | 3.8 | 3.7 | 3.6 |
根據(jù)以上數(shù)據(jù),小張分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:,方程乙:.
(1)以為解釋變量,為預報變量,作出散點圖;
(2)分別計算模型甲與模型乙的殘差平方和及,并通過比較,大小,判斷哪個模型擬后效果更好.
(3)若—個玩具進價0.5元,依據(jù)(2)中擬合效果好的模型判斷該玩具店有無虧損的可能?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三峽大壩專用公路沿途山色秀美,風景怡人.為確保安全,全程限速為80公里/小時.為了解汽車實際通行情況,經過監(jiān)測發(fā)現(xiàn)某時段200輛汽車通過這段公路的車速均在[50,90](公里/小時)內,根據(jù)監(jiān)測結果得到如下組距為10的頻率分布折線圖:
(1)請根據(jù)頻率分布折線圖,將頰率分布直方圖補充完整(用陰影部分表示);
(2)求這200輛汽車在該路段超速的車輛數(shù)以及在該路段的平均速度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com