【答案】
分析:(Ⅰ)由
,a
n>0,知a
1=1.
,即
,由此能求出a
2=2.
(Ⅱ)由
得,a
13+a
23+…+a
n3=(a
1+a
2+…+a
n)
2,故a
13+a
23+…+a
n3+a
n+13=(a
1+a
2+…+a
n+a
n+1)
2,由此得a
n+13=(a
1+a
2+…+a
n+a
n+1)
2-(a
1+a
2+…+a
n)
2,由此能夠?qū)С鯽
n+12-a
n2=a
n+1+a
n,所以a
n+1-a
n=1(n≥2),所以數(shù)列{a
n}是首項為1,公差為1的等差數(shù)列,由此能求出其通項公式.
解答:解:(Ⅰ)當n=1時,有
,由于a
n>0,所以a
1=1
當n=2時,有
,即
,將a
1=1代入上式,由于a
n>0,所以a
2=2
(Ⅱ)由
得,a
13+a
23+…+a
n3=(a
1+a
2+…+a
n)
2①
則有a
13+a
23+…+a
n3+a
n+13=(a
1+a
2+…+a
n+a
n+1)
2②
②-①,得a
n+13=(a
1+a
2+…+a
n+a
n+1)
2-(a
1+a
2+…+a
n)
2由于a
n>0,所以a
n+12=2(a
1+a
2+…+a
n)+a
n+1③
同樣有a
n2=2(a
1+a
2+…+a
n-1)+a
n④
③-④,得a
n+12-a
n2=a
n+1+a
n,所以a
n+1-a
n=1(n≥2),
由于a
2-a
1=1,即當n≥1時都有a
n+1-a
n=1,
所以數(shù)列{a
n}是首項為1,公差為1的等差數(shù)列
故a
n=n
點評:本題考查數(shù)列的性質(zhì)和應用,解題時要認真審題,仔細解答,注意遞推公式的合理運用.