若f(1,1)=1234,f(x,y)=k,f(x,y+1)=k-3,則f(1,2012)=( 。
分析:根據(jù)題意可得f(x,y+1)=k-3=f(x,y)-3,從而f(x,y+1)-f(x,y)=-3,利用等差數(shù)列的定義可以看出數(shù)列{f(1,n)}是首項為f(1,1)=1234,公差為-3的等差數(shù)列,利用等差數(shù)列的通項公式得出f(1,n),從而得出f(1,2012)的值.
解答:解:∵f(x,y+1)=k-3=f(x,y)-3
∴f(x,y+1)-f(x,y)=-3
可以看出數(shù)列{f(1,n)}是首項為f(1,1)=1234,公差為-3的等差數(shù)列,
∴f(1,n)=1234+(n-1)(-3)=-3n+1237,
∴f(1,2012)=-3×2012+1237=-4799.
故選A.
點評:本題主要考查了簡單的合情推理,考查了等差數(shù)列的應用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有f(
1
x
)=af(x)-x-1
,且f(1)=1,則函數(shù)F(x)=f(x)(x∈D={x|x∈R,x>0,f(x)≥x})的取值范圍是
[
1
2
+
3
4
,+∞)
[
1
2
+
3
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax,g(x)=lnx
(1)若f(x)≥g(x)對于定義域內(nèi)的x恒成立,求實數(shù)a的取值范圍;
(2)設h(x)=f(x)+g(x)有兩個極值點x1,x2且x1∈(0,
1
2
),求證:h(x1)-h(x2)>
3
4
-ln2;
(3)設r(x)=f(x)+g(
1+ax
2
),若對任意的a∈(1,2),總存在x0∈[
1
2
,1
],使不等式r(x0)>k(1-a2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)設α∈(0,π),函數(shù)f(x)的定義域為[0,1],且f(0)=0,f(1)=1,對定義域內(nèi)任意的x,y,滿足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)試用α表示f(
1
2
),并在f(
1
2
)時求出α的值;
(2)試用α表示f(
1
4
),并求出α的值;
(3)n∈N時,an=
1
2n
,求f(an),并猜測x∈[0,1]時,f(x)的表達式.
(文)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)
(1)若點A、B、C不能構(gòu)成三角形,求實數(shù)m應滿足的條件.
(2)若△ABC為直角三角形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)f (x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)試求f(0)的值;
(2)試求函數(shù)f (x)的最大值;
(3)試證明:當x∈(
1
4
,
1
2
]
時,f(x)<2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax+b

(Ⅰ)若f(x)與g(x)在x=1處相切,試求g(x)的表達式;
(Ⅱ)若φ(x)=
m(x-1)
x+1
-f(x)
在[1,+∞)上是減函數(shù),求實數(shù)m的取值范圍;
(Ⅲ)證明不等式:
2n
n+1
1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)
n
2
+1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

同步練習冊答案