已知數(shù)列{an}滿足:an+1=an+(
1
2
)n+1(n∈N*),且a1=1;設(shè)bn=
1
2
an-
3
4

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若cn=2n-1(n∈N*),求數(shù)列{bn•cn}的前n項(xiàng)和Sn
(Ⅰ)∵an+1=an+(
1
2
)n+1(n∈N*),且a1=1

∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=1+(
1
2
)2+(
1
2
)3+…+(
1
n
)n=1+
1
4
[1-(
1
2
)
n-1
]
1-
1
2
=
3
2
-(
1
2
)n

又∵當(dāng)n=1時(shí),上式也成立,∴an=
3
2
-(
1
2
)n(n∈N*)

(Ⅱ)∵bn=
1
2
an-
3
4
=
1
2
[
3
2
-(
1
2
)n]-
3
4
=-
1
2
n+1
(n∈N*)
,
又∵cn=2n-1(n∈N*)
∴Sn=b1•c1+b2•c2+…+bn•cn
Sn=-(
1
2
)2-3×(
1
2
)3-5×(
1
2
)4-…-(2n-1)×(
1
2
)n+1

1
2
Sn=-(
1
2
)3-3×(
1
2
)4-…-(2n-3)×(
1
2
)n+1-(2n-1)×(
1
2
)n+2

①-②得:
1
2
Sn=-(
1
2
)2-2×(
1
2
)3-2×(
1
2
)4-…-2×(
1
2
)n+1+(2n-1)×(
1
2
)n+2

=-
1
4
-2[(
1
2
)3+(
1
2
)4+…+(
1
2
)n+1]+(2n-1)(
1
2
)n+2=-
3
4
+
2n+3
2n+2

Sn=-
3
2
+
2n+3
2n+1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案