9.若函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),且x0∈(a,b)則$\lim_{h→0}\frac{{f({x_0}-h)\;-f({x_0})}}{h}$的值為(  )
A.f′(x0B.-f′(x0C.-2f′(x0D.0

分析 將已知的等式變形為符合導(dǎo)數(shù)定義的形式,利用導(dǎo)數(shù)定義得到答案.

解答 解:$\lim_{h→0}\frac{{f({x_0}-h)\;-f({x_0})}}{h}$=$\underset{lim}{n→∞}\frac{f({x}_{0}-h)-f({x}_{0})}{-h}×(-1)$=-f'(x0);
故選B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的定義;正確將已知等式變形為符合導(dǎo)數(shù)定義的形式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.記U={1,2,…,100},對(duì)數(shù)列{an}(n∈N*)和U的子集T,若T=∅,定義ST=0;若T={t1,t2,…,tk},定義ST=a${\;}_{{t}_{1}}$+a${\;}_{{t}_{2}}$+…+a${\;}_{{t}_{k}}$.例如:T={1,3,66}時(shí),ST=a1+a3+a66.現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當(dāng)T={2,4}時(shí),ST=30.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)任意正整數(shù)k(1≤k≤100),若T⊆{1,2,…,k},求證:ST<ak+1;
(3)對(duì)任意正整數(shù)k(1≤k≤100),若T={1,2,…,k},記數(shù)列{$\frac{1}{{S}_{T}}$}的前k項(xiàng)和為H,求證:H<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.三角形ABC中sinA=$\frac{4}{5}$,cosB=$\frac{5}{13}$,c=56,求sinC及三角形ABC外接圓的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,${a_{n+1}}=\frac{n+2}{n}{S_n}$(n∈N*).
(1)證明:數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)過(guò)點(diǎn)M(-6,6);
(2)焦點(diǎn)F在直線l:3x-2y-6=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)中,為奇函數(shù)的是( 。
A.f(x)=2x-3xB.f(x)=x3+x2C.f(x)=sinxtanxD.$f(x)=lg\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若$\overrightarrow{a}$與$\overrightarrow$是非零向量,且|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$的方向與$\overrightarrow{a}$+$\overrightarrow$的方向所成的角是( 。
A.B.60°C.30°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在某商業(yè)區(qū)周邊有兩條公路l1和l2,在點(diǎn)O處交匯;該商業(yè)區(qū)為圓心角$\frac{π}{3}$、半徑3km的扇形.現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路AB,與l1,l2分別交于A,B,要求AB與扇形弧相切,切點(diǎn)T不在l1,l2上.
(1)設(shè)OA=akm,OB=bkm試用a,b表示新建公路AB的長(zhǎng)度,求出a,b滿足的關(guān)系式,并寫出a,b的范圍;
(2)設(shè)∠AOT=α,試用α表示新建公路AB的長(zhǎng)度,并且確定A,B的位置,使得新建公路AB的長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若直線a2x+y+7=0和直線x-2ay+1=0垂直,則實(shí)數(shù)a的值為0或2.

查看答案和解析>>

同步練習(xí)冊(cè)答案