精英家教網 > 高中數學 > 題目詳情

如圖,已知四棱錐P-ABCD的底面邊長為a的正方形,PD⊥底面ABCD,設PD=2a,M、N分別為PB、AB的中點.

(1)求三棱錐P-DMN的體積;

(2)求二面角M-DN-C的平面角.

答案:
解析:

設AC∩BD=O,連MO,PN.

∵MO∥PD,PD⊥底面ABCD,

∴MO⊥底面ABCD,

(1)∵N為AB中點,∴

(2)過O作OK⊥ON于K,連KM,由三垂線定理知MK⊥DN.∴∠MKO為二面角M-DN-C的平面角.連ON,易求得

,

,

∴二面角M-DN-C的大小為


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點E是BC邊上的中點.
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點,AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習冊答案