如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1
(I)證明:AB=AC;
(II)設(shè)二面角A-BD-C為60°,求B1C與平面BCD所成的角的大。
【答案】分析:(1)連接BE,可根據(jù)射影相等的兩條斜線段相等證得BD=DC,再根據(jù)相等的斜線段的射影相等得到AB=AC;
(2)求B1C與平面BCD所成的線面角,只需求點(diǎn)B1到面BDC的距離即可,作AG⊥BD于G,連GC,∠AGC為二面角A-BD-C的平面角,在三角形AGC中求出GC即可.
解答:解:如圖
(I)連接BE,∵ABC-A1B1C1為直三棱柱,
∴∠B1BC=90°,
∵E為B1C的中點(diǎn),∴BE=EC.
又DE⊥平面BCC1
∴BD=DC(射影相等的兩條斜線段相等)而DA⊥平面ABC,
∴AB=AC(相等的斜線段的射影相等).

(II)求B1C與平面BCD所成的線面角,
只需求點(diǎn)B1到面BDC的距離即可.
作AG⊥BD于G,連GC,則GC⊥BD,
∠AGC為二面角A-BD-C的平面角,∠AGC=60°
不妨設(shè),則AG=2,GC=4
在RT△ABD中,由AD•AB=BD•AG,易得
設(shè)點(diǎn)B1到面BDC的距離為h,B1C與平面BCD所成的角為α.
利用,
可求得h=,又可求得,∴α=30°.
即B1C與平面BCD所成的角為30°.
點(diǎn)評(píng):本題主要考查了平面與平面之間的位置關(guān)系,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對(duì)角線交于點(diǎn)D,B1C1的中點(diǎn)為M,求證:CD⊥平面BDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點(diǎn),E為B1C的中點(diǎn).
(1)求直線BE與A1C所成的角;
(2)在線段AA1中上是否存在點(diǎn)F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點(diǎn).
(Ⅰ)求線段MN的長;
(Ⅱ)求證:MN∥平面ABB1A1
(Ⅲ)線段CC1上是否存在點(diǎn)Q,使A1B⊥平面MNQ?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點(diǎn).
(Ⅰ)證明:A1C1∥平面ACD;
(Ⅱ)求異面直線AC與A1D所成角的大;
(Ⅲ)證明:直線A1D⊥平面ADC.

查看答案和解析>>

同步練習(xí)冊(cè)答案