如圖,已知直線與拋物線相切于點,且與軸交于點為坐標(biāo)原點,定點的坐標(biāo)為

(1)若動點滿足,求點的軌跡.

(2)若過的直線(斜率不等于0)與(1)中的軌跡的交于不同的兩點之間),試求面積之比的取值范圍.

 

 

 

 

 

 

【答案】

 解∵拋物線為,過的切線為

    即      ∴                        (2分)

    設(shè)  ∵   

    即    

    ∴   

            

    ∴

    ∴                                               (5分)

    ∴的軌跡是中心在原點,長軸為,短軸為2的橢圓 (6分)

(2)設(shè)   

    設(shè)方程為  

    聯(lián)立

    得      

    得       

             9分

    ∵      則

    又     

    得                          (10分)

    又∵          ∴

    即           

    又∵        ∴            (12分)

說明:此題也可以設(shè)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準(zhǔn)線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學(xué) 題型:填空題

22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準(zhǔn)線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

 
(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟寧市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準(zhǔn)線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省月考題 題型:解答題

已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準(zhǔn)線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y﹣1)2=1交于A、C、D、B四點,試證明|AC||BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分15分)

        已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準(zhǔn)線的距離等于5。

   (I)求拋物線G的方程;

   (II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓交于A、C、D、B四點,試證明為定值;

 
   (III)過A、B分別作拋物G的切線交于點M,試求面積之和的最小值。

查看答案和解析>>

同步練習(xí)冊答案