已知△ABC中滿足A-C=90°,a+c=
2
b,求角C.
考點:正弦定理的應(yīng)用
專題:解三角形
分析:根據(jù)已知和正弦定理可得sinA+sinC=
2
sinB,由角的關(guān)系和范圍可得sin2C=
1
2
,或-1,根據(jù)已知可求得角C的值.
解答: 解:∵A-C=90°,A+B+C=π,
∴A=90°+C,B=90°-2C,
∵a+c=
2
b,
∴由正弦定理可得sinA+sinC=
2
sinB,
∴sin(90°+C)+sinC=
2
sin(90°-2C),整理可得cosC+sinC=
2
cos2C
∴兩邊平方可得:1+sin2C=2cos22C=2-2sin22C,即有2sin22C+sin2C-1=0,從而可解得sin2C=
1
2
,或-1
∵0<C<90°,0<2C<180°
∴sin2C=
1
2
,有2C=
π
6
6

∴C=
π
12
12
(舍去).
∴C=
π
12
點評:本題主要考查了正弦定理的應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

A={1,2,3},B={C|C⊆A},則{1,2}
 
B.(填合適的符號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
x+1
,點A0表示坐標(biāo)原點,點An(n,f(n))(n∈N*).若向量an=
A0A1
+
A1A2
+…+
AN-1An
,θn是an與i的夾角(其中i=(1,0)),則tanθn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體O-ABC中,M、N分別是OA、BC的中點,P是MN上(靠近點M)的三等分點,其中OA=OB=OC=1,∠AOC=∠AOB=∠BOC=60°,求異面直線OP與AB所成角的余弦值.(用向量法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是線段EF的中點.
(Ⅰ)求三棱錐A-BDF的體積;
(Ⅱ)求證:AM∥平面BDE;
(Ⅲ)求異面直線AM與DF所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時,f(x)=
x2-x,x∈[0,1)
-(
1
2
)|x-
3
2
|
,x∈[1,2)
則當(dāng)x∈[-4,-2)時,函數(shù)f(x)的最小值為(  )
A、-
1
16
B、-
1
4
C、-
1
2
D、-
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(普通文科做)已知f(x)=x3+bx2+9x+a有兩個極值點,求:
(1)b的取值范圍;
(2)當(dāng)x=1時,切線的斜率為0.求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=(-1)n+1n-2an(n∈N+)且a1=a7,那么a1+a2+a3+a4+a5+a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x與過其焦點且垂直于x軸的直線相交于A,B兩點,其準(zhǔn)線與x軸的交點為M,則過M,A,B三點的圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

同步練習(xí)冊答案