(本題12分)一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球.現(xiàn)從口袋中每次任取一球,每次取出不放回,連續(xù)取兩次.問(wèn):

(1)取出的兩只球都是白球的概率是多少?

(2)取出的兩只球至少有一個(gè)白球的概率是多少?

 

【答案】

(1)取出的兩只球都是白球的概率為3/10;

(2)以取出的兩只球中至少有一個(gè)白球的概率為9/10。

【解析】本題主要考查了等可能事件的概率,以及對(duì)立事件和古典概型的概率等有關(guān)知識(shí),屬于中檔題

(1)分別記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào),然后例舉出一切可能的結(jié)果組成的基本事件,然后例舉出取出的兩只球都是白球的基本事件,然后根據(jù)古典概型的概率公式進(jìn)行求解即可;

(2)“取出的兩只球中至少有一個(gè)白球的事件”的對(duì)立事件是“取出的兩只球均為黑球”,例舉出取出的兩只球均為黑球的基本事件,求出其概率,最后用1去減之,即可求出所求.

解::(1)分別記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào).從口袋中每次任取一球,每次取出不放回,連續(xù)取兩次,

其一切可能的結(jié)果組成的基本事件(第一次摸到1號(hào),第二次摸到2號(hào)球用(1,2)表示)空間為:

Ω={(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(2,3),(3,2),(2,4),(4,2),(2,5),(5,2),(3,4),(4,3),(3,5),(5,3),(4,5),(5,4)},

共有20個(gè)基本事件,且上述20個(gè)基本事件發(fā)生的可能性相同.

記“取出的兩只球都是白球”為事件A.

A={(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)},共有6個(gè)基本事件.

故P(A)=6/20=3/10

所以取出的兩只球都是白球的概率為3/10

(2)設(shè)“取出的兩只球中至少有一個(gè)白球”為事件B,則其對(duì)立事件B

為“取出的兩只球均為黑球”

.B={(4,5),(5,4)},共有2個(gè)基本事件.

則P(B)=1-P(B)=1-2/20=9/10

所以取出的兩只球中至少有一個(gè)白球的概率為9/10

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球.現(xiàn)從口袋中每次任取一球,每次取出不放回,連續(xù)取兩次.問(wèn):
(1)取出的兩只球都是白球的概率是多少?
(2)取出的兩只球至少有一個(gè)白球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一只口袋內(nèi)裝有大小相同的4只球,將4只球分別編號(hào)為1、2、3、4,現(xiàn)依次不放回的隨機(jī)摸出2只球,則:
(1)列舉出這個(gè)試驗(yàn)的所有基本事件;
(2)摸出2只球的號(hào)碼之和為5的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一只口袋內(nèi)裝有大小質(zhì)量完全相同的5只球,其中2只白球,3只黑球,從中一次摸出一個(gè)球,則摸得黑球的概率是
3
5
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球
(1)共有多少個(gè)基本事件?
(2)摸出的2只球都是白球的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案