)已知數(shù)列{an}是首項(xiàng)為-1,公差d 0的等差數(shù)列,且它的第2、3、6項(xiàng)依次構(gòu)成等比數(shù)列{bn}的前3項(xiàng)。
(1)求{an}的通項(xiàng)公式;
(2)若Cn=an·bn,求數(shù)列{Cn}的前n項(xiàng)和Sn。
(1);(2).

試題分析:(1)由首項(xiàng)可求出公差,從而得通項(xiàng)公式;(2)易得,所以 .凡是等差數(shù)列與等比數(shù)列的積構(gòu)成的數(shù)列,都用錯(cuò)位相消法求和. 
試題解析:(1)由題意知:
,                 2分
                         4分
                         6分
(2)由題意,所以,
            8分




          12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{}的首項(xiàng)a1=1,公差d>0,且分別是等比數(shù)列{}的b2,b3,b4
(I)求數(shù)列{}與{{}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}對(duì)任意自然數(shù)n均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an} 的前n項(xiàng)和為Sn,滿足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an+2n}是等比數(shù)列;
(3)證明:對(duì)一切正整數(shù)n,有++…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列中,已知,時(shí),.?dāng)?shù)列滿足:
(1)證明:為等差數(shù)列,并求的通項(xiàng)公式;
(2)記數(shù)列的前項(xiàng)和為,若不等式成立(為正整數(shù)).求出所有符合條件的有序?qū)崝?shù)對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請(qǐng)說明理由;
(3)若,求證:使得,成等差數(shù)列的點(diǎn)列在某一直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明“”時(shí),從“”到“”左邊需要添加的代數(shù)式為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一個(gè)類似楊輝三角的數(shù)陣,則第行的第2個(gè)數(shù)為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列為等差數(shù)列,若,則公差    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為等差數(shù)列的前項(xiàng)和,,則為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案