等差數(shù)列{an}中,ap=q,aq=p,(p,q∈N,且p≠q),則ap+q=
0
0
分析:設(shè)出首項(xiàng)和公差并表示出ap和aq,然后將求出公差和首項(xiàng),最后求出結(jié)果即可.
解答:解:設(shè)首項(xiàng)為 a1,公差為 d,
則 ap=a1+(p-1)d=q,
aq=a1+(q-1)d=p,
兩式相減得 (p-q)d=q-p,
所以解得  d=-1,代入可得 a1=p+q-1,
所以 ap+q=a1+(p+q-1)d=(p+q-1)+(p+q-1)*(-1)=0.
故答案為:0
點(diǎn)評(píng):此題考查了等差數(shù)列的性質(zhì),求出公差和首項(xiàng)是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊(cè)答案