不等式x(2-x)>0的解集是( )
A.(-∞,2)
B.(0,2)
C.(-∞,0)
D.(-∞,0)∪(2,+∞)
【答案】分析:由x(2-x)>0,知x(x-2)<0,再由x(x-2)=0的解是x=0,或x=2,能求出原不等式的解集.
解答:解:∵x(2-x)>0,
∴x(x-2)<0,
∵x(x-2)=0的解是x=0,或x=2,
∴原不等式的解集是{x|0<x<2}.
故選B.
點評:本題考查一元二次不等式的解集的求法,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對于函數(shù)f(x)=
x-1
x+1
,設f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>0,使關于x的不等式|x-3|+|x-4|<a在R上的解集不是空集,設a的取值集合是A;若不等式|x|>bx(b∈R)的解集為(0,+∞),設實數(shù)b的取值集合是B,試求當x∈A∪B時,f(x)=2|x+1|-|x-1|的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對于函數(shù)f(x)=
x-1
x+1
,設f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若a>0,使關于x的不等式|x-3|+|x-4|<a在R上的解集不是空集,設a的取值集合是A;若不等式|x|>bx(b∈R)的解集為(0,+∞),設實數(shù)b的取值集合是B,試求當x∈A∪B時,f(x)=2|x+1|-|x-1|的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省聊城市莘縣高二(上)期中數(shù)學試卷(解析版) 題型:選擇題

不等式x(2-x)≤0的解集為( )
A.{x|0≤x≤2}
B.{x|x≤0,或x≥2}
C.{x|x≤2}
D.{x|x≥0}

查看答案和解析>>

同步練習冊答案