正三棱錐的高為
3
,側(cè)棱長(zhǎng)為
7
,那么側(cè)面與底面所成二面角的大小是( 。
A.60°B.30°C.arccos
21
7
D.arcsin
21
7
設(shè)正三棱錐為P-ABC,底面為正三角形,高OP,O點(diǎn)為△ABC外(內(nèi)心、重心),OC=
PC2-OP2
=2 延長(zhǎng)CO交AB于D,OD=
OC
2
=1,CD=3,BD=
3

PD=
OP2+OD2
=2,AB⊥CD,PD⊥AB,∠CDP是P-AB-C二面角的平面角,
cos∠CDP=
1
2
,∠CDP=60°,是側(cè)面與底面所成的二面角.
故選:A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)系中,A(-2,3),B(3,-2)沿x軸把直角坐標(biāo)系折成90°的二面角,則此時(shí)線段AB的長(zhǎng)度為( 。
A.2
5
B.
38
C.5
2
D.4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正四棱柱ABCD-A1B1C1D1中,底面邊長(zhǎng)為a,側(cè)棱AA1長(zhǎng)為ka(k>0),E為側(cè)棱BB1的中點(diǎn),記以AD1為棱,EAD1,A1AD1為面的二面角大小為θ.
(1)是否存在k值,使直線AE⊥平面A1D1E,若存在,求出k值;若不存在,說(shuō)明理由;
(2)試比較tanθ與2
2
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明:AD⊥平面PAB;
(2)求異面直線PC與AD所成的角的余弦值;
(3)求二面角P-BD-A的大小余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△CDF分別沿DE,DF折起,使A,C兩點(diǎn)重合于A′.

(1)求證:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

長(zhǎng)方體ABCD-A1B1C1D1的側(cè)棱AA1=a,底面ABCD的邊長(zhǎng)AB=2a,BC=a,E為C1D1的中點(diǎn);
(1)求證:DE⊥平面BCE;
(2)求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是二面角α-AB-β棱AB上的一點(diǎn),分別在α,β上引射線PM,PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在三棱錐S-ABC中,底面是邊長(zhǎng)為4的正三角形,側(cè)面SAC⊥底面ABC,M,N分別是AB,SB的中點(diǎn),SA=SC=2
3

(1)求證AC⊥SB
(2)求二面角N-CM-B的大小
(3)求點(diǎn)B到面CMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將邊長(zhǎng)為的正方形沿對(duì)角線折起,使得平面平面,   
在折起后形成的三棱錐中,給出下列三個(gè)命題:
①面是等邊三角形; ②; 
③三棱錐的體積是.
其中正確命題的序號(hào)是_          .(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案