A. | (1,+∞) | B. | ($\frac{1}{3}$,+∞) | C. | ($\frac{1}{3}$,1] | D. | ($\frac{1}{2}$,$\frac{1}{3}$] |
分析 當(dāng)a≥3的取值范圍結(jié)合函數(shù)f(x)有兩個零點,利用韋達(dá)定理寫出x1+x2,x1•x2的表達(dá)式,結(jié)合一元二次函數(shù)的性質(zhì)進行求解即可.
解答 解:f (x)=x2-x|x-a|-3a=$\left\{\begin{array}{l}{2{x}^{2}-ax-3a,}&{x≤a}\\{ax-3a,}&{x>a}\end{array}\right.$,a≥3,
當(dāng)x>a>3,令f(x)=0,ax-3a=0,x=3,不滿足,
x≤a時,函數(shù)f (x)恰有兩個不同的零點x1,x2,
令f(x)=0,則可得x1,x2是方程2x2-ax-3a=0的兩個根,
則:x1+x2=$\frac{a}{2}$,x1•x2=-$\frac{3a}{2}$,
|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|=$\frac{丨{x}_{1}-{x}_{2}丨}{{丨x}_{1}{x}_{2}丨}$=$\frac{\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}}{{丨x}_{1}{x}_{2}丨}$=$\frac{\sqrt{{a}^{2}+24a}}{3a}$=$\frac{1}{3}$$\sqrt{1+\frac{24}{a}}$∈($\frac{1}{3}$,1],
故答案選:C.
點評 本題主要考查函數(shù)單調(diào)性和函數(shù)零點的應(yīng)用,根據(jù)分段函數(shù)的性質(zhì)是解決本題的關(guān)鍵.綜合性較強,難度較大.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=12x | B. | y2=14x | C. | y2=16x | D. | y2=18x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ex•sin2x+ex•cos2x | B. | ex•sin2x+2ex•cos2x | ||
C. | ex•sin2x-ex•cos2x | D. | ex•sin2x-2ex•cos2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
家庭月收入 (單位:元) | 2千以下 | 2千~5千 | 5千~8千 | 8千~一萬 | 1萬~2萬 | 2萬以上 |
調(diào)查的總?cè)藬?shù) | 5 | 10 | 15 | 10 | 5 | 5 |
有二孩計劃的家庭數(shù) | 1 | 2 | 9 | 7 | 3 | 4 |
收入不高于8千的家庭數(shù) | 收入高于8千的家庭數(shù) | 合計 | |
有二孩計劃的家庭數(shù) | |||
無二孩計劃的家庭數(shù) | |||
合計 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 |
k | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com