已知正四棱錐S—ABCD中,SA=2,那么當(dāng)該棱錐的體積最大時(shí),它的高為(  )

A.1   B.   C.2   D.3

 

C

【解析】如圖所示,設(shè)正四棱錐高為h,底面邊長為a,則a=,即a2=2(12-h(huán)2),

所以V=×a2×h=h(12-h(huán)2)=-(h3-12h),

令f(h)=h3-12h,則f′(h)=3h2-12(h>0),

令f′(h)=0,則h=2,此時(shí)f(h)有最小值,V有最大值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第七章 立體幾何(解析版) 題型:解答題

(2014·貴陽模擬)一個(gè)幾何體是由圓柱ADD1A1和三棱錐E-ABC組合而成,點(diǎn)A,B,C在圓O的圓周上,其正(主)視圖,側(cè)(左)視圖的面積分別為10和12,如圖所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求證:AC⊥BD.

(2)求三棱錐E-BCD的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.

(1)證明:A1C⊥平面BB1D1D;

(2)求平面OCB1與平面BB1D1D的夾角θ的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

若k,-1,b三個(gè)數(shù)成等差數(shù)列,則直線y=kx+b必經(jīng)過定點(diǎn)(  )

A.(1,-2) B.(1,2) C.(-1,2) D.(-1,-2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:填空題

三棱錐S—ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結(jié)論中:

①異面直線SB與AC所成的角為90°.

②直線SB⊥平面ABC;

③平面SBC⊥平面SAC;

④點(diǎn)C到平面SAB的距離是a.

其中正確結(jié)論的序號是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

設(shè)z=x+y,其中實(shí)數(shù)x,y滿足,若z的最大值為6,則z的最小值為(  )

A.-3 B.-2 C.-1 D.0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題

如圖所示,已知橢圓E經(jīng)過點(diǎn)A(2,3),對稱軸為坐標(biāo)軸,焦點(diǎn)F1,F(xiàn)2在x軸上,離心率e=,斜率為2的直線l過點(diǎn)A(2,3).

(1)求橢圓E的方程;

(2)在橢圓E上是否存在關(guān)于直線l對稱的相異兩點(diǎn)?若存在,請找出;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:選擇題

已知A={x|x+1>0},B={-2,-1,0,1},則(∁RA)∩B=( )

A.{-2,-1} B.{-2} C.{-1,0,1} D.{0,1}

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中軸的正半軸重合,且兩坐標(biāo)系有相同的長度單位,圓C的參數(shù)方程為為參數(shù)),點(diǎn)Q的極坐標(biāo)為。

(1)化圓C的參數(shù)方程為極坐標(biāo)方程;

(2)直線過點(diǎn)Q且與圓C交于M,N兩點(diǎn),求當(dāng)弦MN的長度為最小時(shí),直線的直角坐標(biāo)方程。

 

查看答案和解析>>

同步練習(xí)冊答案