已知盒子里有大小相同的球10個(gè),其中標(biāo)號(hào)為1的球3個(gè),標(biāo)號(hào)為2的球4個(gè),標(biāo)號(hào)為4的球3個(gè).
(1)若從盒子里一次任取3個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,求取出的三個(gè)球中標(biāo)號(hào)為1,2,4的球各一個(gè)的概率;
(2)若第一次從盒子里任取1個(gè)球,放回后,第二次再任取1個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,記第一次與第二次取出球的標(biāo)號(hào)之和為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

解:(Ⅰ)由題意知本題是一個(gè)古典概型,
設(shè)從盒子里一次任取3個(gè)球,取出的三個(gè)球中標(biāo)號(hào)為1,2,4的球各一個(gè)的概率為P,
試驗(yàn)包含的所有事件是從10個(gè)球中取3個(gè),共有C103種結(jié)果,
而滿足條件的事件是取出的三個(gè)球中標(biāo)號(hào)為1,2,4的球各一個(gè)有C31C41C31種結(jié)果,
∴P=
即取出的三個(gè)球中標(biāo)號(hào)為1,2,4的球各一個(gè)的概率為
(Ⅱ)由題意可得,隨機(jī)變量ξ的取值分別是2,3,4,5,6,8.
則隨機(jī)變量ξ的分布列如下:
P(ξ=2)=
P(ξ=3)=
P(ξ=4)=
P(ξ=5)==0.18
P(ξ=6)==0.24
P(ξ=8)==0.09
∴變量的分布列是

∴Eξ=2×0.09+3×0.24+4×0.16+5×0.18+6×0.24+8×0.09=4.6
分析:(1)由題意知本題是一個(gè)古典概型,試驗(yàn)包含的所有事件是從10個(gè)球中取3個(gè),共有C103種結(jié)果,而滿足條件的事件是取出的三個(gè)球中標(biāo)號(hào)為1,2,4的球各一個(gè)有C31C41C31種結(jié)果,根據(jù)古典概型公式得到結(jié)果.
(2)由題意可得,隨機(jī)變量ξ的取值分別是2,3,4,5,6,8.當(dāng)變量取2時(shí)表示得到兩個(gè)球標(biāo)號(hào)都是1,根據(jù)古典概型公式得到概率,以此類推,做出其他的概率,寫出分布列,求出期望.
點(diǎn)評(píng):本題考查求離散型隨機(jī)變量的分布列,求離散型隨機(jī)變量的分布列和期望是近年來(lái)理科高考必出的一個(gè)問(wèn)題,題目做起來(lái)不難,運(yùn)算量也不大,只要注意解題格式就問(wèn)題不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知盒子里有大小相同的球10個(gè),其中標(biāo)號(hào)為1的球3個(gè),標(biāo)號(hào)為2的球4個(gè),標(biāo)號(hào)為4的球3個(gè).
(1)若從盒子里一次任取3個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,求取出的三個(gè)球中標(biāo)號(hào)為1,2,4的球各一個(gè)的概率;
(2)若第一次從盒子里任取1個(gè)球,放回后,第二次再任取1個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,記第一次與第二次取出球的標(biāo)號(hào)之和為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

(2007北京崇文模擬)已知盒子里有大小相同的球10個(gè),其中標(biāo)號(hào)為1的球3個(gè),標(biāo)號(hào)為2的球4個(gè),標(biāo)號(hào)為4的球3個(gè).

(1)若從盒子里一次任取3個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,求取出的三個(gè)球中標(biāo)號(hào)為12,4的球各一個(gè)的概率;

(2)若第一次從盒子里任取1個(gè)球,放回后,第二次再任取1個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,記第一次與第二次取出球的標(biāo)號(hào)之和為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知盒子里有大小相同的球10個(gè),其中標(biāo)號(hào)為1的球3個(gè),標(biāo)號(hào)為2的球4個(gè),標(biāo)號(hào)為4的球3個(gè).

⑴ 若從盒子里一次任取3個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,求取出的三個(gè)球中標(biāo)號(hào)為1,2,4的球各一個(gè)的概率;

⑵ 若第一次從盒子里任取1個(gè)球,放回后,第二次再任取1個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,記第一次與第二次取出球的標(biāo)號(hào)之和為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年北京市崇文區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知盒子里有大小相同的球10個(gè),其中標(biāo)號(hào)為1的球3個(gè),標(biāo)號(hào)為2的球4個(gè),標(biāo)號(hào)為4的球3個(gè).
(1)若從盒子里一次任取3個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,求取出的三個(gè)球中標(biāo)號(hào)為1,2,4的球各一個(gè)的概率;
(2)若第一次從盒子里任取1個(gè)球,放回后,第二次再任取1個(gè)球,假設(shè)取出每個(gè)球的可能性都相同,記第一次與第二次取出球的標(biāo)號(hào)之和為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案