已知函數(shù)y=f(x)對(duì)任意的實(shí)數(shù)x1,x2,都有f(x1+x2)=f(x1)+f(x2),且當(dāng)x>0時(shí),f(x)<0
(1)求f(0);
(2)判斷函數(shù)y=f(x)的單調(diào)性,并給出證明.
(3)如果f(x)+f(2-3x)<0,求x的取值范圍.
解:(1)解令x2=0,由f(x1+0)=f(x1)+f(0)
即:f(x1)=f(x1)+f(0),解之得f(0)=0
(2)函數(shù)y=f(x)在區(qū)間 (-∞,+∞)是減函數(shù)
證明:設(shè)x1,x2∈R,且x1<x2
則f(x2)-f(x1)=f[x1+(x2-x1)]-f(x1)=f(x1)+f(x2-x1)-f(x1)=f(x2-x1),
∵x1<x2,得x2-x1>0.
∴由當(dāng)x>0時(shí)f(x)<0,得f(x2)-f(x1)=f(x2-x1)<0
可得f(x1)>f(x2)
∴函數(shù)y=f(x)在區(qū)間(-∞,+∞)是減函數(shù)
(3)∵f(0)=0且f(x)+f(2-3x)=f[x+(2-3x)]=f(2-2x),
∴不等式f(x)+f(2-3x)<0轉(zhuǎn)化為f(2-2x)<f(0),
又∵f(x)在區(qū)間(-∞,+∞)是減函數(shù)
∴2-2x>0,解之得x<1,即x的取值范圍為(-∞,1)
分析:(1)在題中所給函數(shù)關(guān)系式中取x2=0,化簡即可計(jì)算出f(0)的值等于0;
(2)設(shè)x1,x2∈R,且x1<x2,根據(jù)題中運(yùn)算法則化簡得f(x2)-f(x1)=f(x2-x1),結(jié)合當(dāng)x>0時(shí)f(x)<0證出f(x2-x1)<0,可得f(x1)>f(x2),從而得到函數(shù)y=f(x)在區(qū)間(-∞,+∞)是減函數(shù);
(3)根據(jù)題中運(yùn)算法則化簡得f(x)+f(2-3x)=f(2-2x),結(jié)合f(0)=0將不等式f(x)+f(2-3x)<0轉(zhuǎn)化為f(2-2x)<f(0),結(jié)合函數(shù)的單調(diào)性即可解出實(shí)數(shù)x的取值范圍.
點(diǎn)評(píng):本題給出抽象函數(shù),求特殊的函數(shù)值、討論函數(shù)的單調(diào),并依此解關(guān)于x的不等式.著重考查了函數(shù)的單調(diào)性、奇偶性和不等式的解法等知識(shí),屬于中檔題.運(yùn)用“賦值法”進(jìn)行求值和化簡,是解決抽象函數(shù)問題的一般方法.