精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知平行六面體的底面為正方形,分別為上、下底面的中心,且在底面的射影是
(Ⅰ)求證:平面平面;
(Ⅱ)若點分別在棱上上,且,問點在何處時,;
(Ⅲ)若,求二面角的大小(用反三角函數表示)。
(Ⅰ)連,則的交點,為AC,的交點。
由平行六面體的性質知: 四邊形為平行四邊形,K]
 
平面平面
平面  
平面平面
(Ⅱ)作平面,垂足為,
,點在直線上,
且EF在平面ABCD上的射影 為。
由三垂線定理及其逆定理,知
,從而
從而 的三等分點(靠近B)時,有
(III)過點,垂足為,連接。
平面ABCD,
 平面。由三垂線定理得
為二面角的平面角。
中, ,
   
二面角的大小為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分10分)
用平行于四面體的一組對棱的平面截此四面體(如圖).
(1)求證:所得截面是平行四邊形;
(2)如果.求證:四邊形的周長為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐中,,,,平面平面,是線段上一點,,
(1)證明:平面;
(2)設三棱錐與四棱錐的體積分別為,求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側棱AA1=2。
(I)求證:C1D//平面ABB1A1;
(II)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(、(8分)如圖,在底面是直角梯形的四棱錐S-ABCD中,


(1)求四棱錐S-ABCD的體積;
(2)求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,為一個等腰三角形形狀的空地,腰的長為(百米),底的長為(百米).現決定在空地內筑一條筆直的小路(寬度不計),將該空地分成一個四邊形和一個三角形,設分成的四邊形和三角形的周長相等、面積分別為

⑴若小路一端的中點,求此時小路的長度;
⑵求的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

、如圖在正三棱錐P-ABC中,E、F分別是PA,AB的中點,∠CEF=90°,若AB=a,則該三棱錐的全面積為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題12分)
如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,點E、F分別為棱AB、PD的中點.
(1)求證:平面PCD;(2)求證:平面PCE⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.已知矩形中,,的中點,沿折起,使,分別為的中點。

(1)求證:直線
(2)求證:面

查看答案和解析>>

同步練習冊答案