11.設(shè)f(x)=$\frac{1}{1+{2}^{x}}$.
(1)求f(a)+f(-a)的值;
(2)求f(-100)+f(-99)+…+f(-1)+f(0)+f(1)+…+f(100)

分析 (1)利用函數(shù)性質(zhì)及有理數(shù)指數(shù)冪運(yùn)算法則能求出f(a)+f(-a)=1.
(2)由f(a)+f(-a)=1,f(0)=$\frac{1}{2}$,能求出f(-100)+f(-99)+…+f(-1)+f(0)+f(1)+…+f(100).

解答 解:(1)∵f(x)=$\frac{1}{1+{2}^{x}}$,
∴f(a)+f(-a)=$\frac{1}{1+{2}^{a}}+\frac{1}{1+{2}^{-a}}$
=$\frac{1}{1+{2}^{a}}+\frac{{2}^{a}}{{2}^{a}+1}$=1.
(2)∵f(a)+f(-a)=1,f(x)=$\frac{1}{1+{2}^{x}}$,
∴f(-100)+f(-99)+…+f(-1)+f(0)+f(1)+…+f(100)
=100×1+f(0)
=100+$\frac{1}{1+{2}^{0}}$
=$\frac{201}{2}$.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個俯視圖為正方形的幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.2B.$\frac{4}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)=|1-x2|,若-1<a<0,b>1且f(a)=f(b),則$\frac{a-1}$的取值范圍( 。
A.(-$\sqrt{2}$,-1)B.(-∞,-$\frac{1}{2}$)C.(-$\sqrt{2}$,-$\frac{1}{2}$)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知${C}_{n}^{3}$=${A}_{n}^{2}$,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.從6名學(xué)生中選出2名學(xué)生擔(dān)任數(shù)學(xué)、物理課代表的選法有(  )
A.10種B.15種C.30種D.45種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將函數(shù)y=-sin($\frac{π}{3}$-x)的周期變?yōu)樵瓉淼?倍,再將新函數(shù)圖象向右平移$\frac{π}{6}$個單位長度,得到y(tǒng)=f(x)的圖象,則函數(shù)y=f(x)的解析式為y=sin($\frac{1}{2}$x-$\frac{5π}{12}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.與圓x2+y2-x+2y=0關(guān)于直線x-y+1=0對稱的圓的方程為(  )
A.(x-2)2+(y-$\frac{3}{2}$)2=$\frac{5}{4}$B.(x+2)2+(y-$\frac{3}{2}$)2=$\frac{5}{4}$C.(x+2)2+(y+$\frac{3}{2}$)2=$\frac{5}{4}$D.(x-2)2+(y+$\frac{3}{2}$)2=$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,已知正三棱錐P-ABC中,底面是正三角形,P在底面內(nèi)的射影是正三角形的中心.若AB=1,側(cè)面和底面所成的角是60°,則此棱錐的表面積是( 。
A.$\frac{3\sqrt{3}}{4}$B.$\frac{5\sqrt{3}}{4}$C.$\frac{1}{4}$+$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$+$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log3x]=4,若x0是方程f(x)-2f'(x)=3的一個解,且${x_0}∈(a,a+1),a∈{N^*}$,則實(shí)數(shù)a=2.

查看答案和解析>>

同步練習(xí)冊答案