如圖所示,PABC所在平面外的一點(diǎn),M、N分別是AB、PC的中點(diǎn),已知PA=BC=m,PB=AC,

(1)求證:MNABPC的公垂線;

(2)當(dāng)PA、BC90°角時(shí),求ABPC間的距離

 

答案:
解析:

(1)證明:連結(jié)ANBN,在△PAC和△CBP中,PA=BC,AC= PB,PC=PC,∴△PAC≌△CBP

N是公共邊PC的中點(diǎn),∴AN=BN

MAB的中點(diǎn),

NMAB

同理MNPC.故MNABPC的公垂線.

(2)解:取PB的中點(diǎn)D,連結(jié)DM、DN,于是DMPA,且DM=PA=m,同理DNBC,且DN=BC=m,于是∠MDN是異面直線PABC所成的角,

∴∠MDN=90°.從而MN=m,即ABPC間的距離為m

點(diǎn)評:求異面直線的距離問題要求不是很高,只要求求給出公垂線的兩異面直線的距離.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:044

如圖所示,PABC所在平面外的一點(diǎn),M、N分別是AB、PC的中點(diǎn),已知PA=BC=mPB=AC,

(1)求證:MNABPC的公垂線;

(2)當(dāng)PA、BC90°角時(shí),求ABPC間的距離

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

如圖所示,p是球O的直徑AB上的動(dòng)點(diǎn),PA=x,過P點(diǎn)且與AB垂直的截面面積記為y,則的大致圖像是

[  ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

如圖所示,p是球O的直徑AB上的動(dòng)點(diǎn),PA=x,過P點(diǎn)且與AB垂直的截面面積記為y,則的大致圖像是

[  ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

如圖所示,設(shè)P是拋物線C1:x2=y上的動(dòng)點(diǎn),過點(diǎn)P作圓C2:x2+(y+3)2=1的兩條切線,交直線l:y=-3A、B兩點(diǎn).

(1)求圓C2的圓心M到拋物線C1準(zhǔn)線的距離;

(2)是否存在點(diǎn)P,使線段AB被拋物線C1在點(diǎn)P處的切線平分?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案