已知變量x、y滿足的約束條件為
y≤x
x+y≤1
y≥-1
,且z=2x+y,則z的最大值是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求最大值.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經(jīng)過點C時,直線y=-2x+z的截距最大,
此時z最大.
y=-1
x+y=1
,解得
x=2
y=-1
,
即C(2,-1),
代入目標函數(shù)z=2x+y得z=2×2-1=3.
即目標函數(shù)z=2x+y的最大值為3.
故答案為:3
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標系中,點A(1,0,1)關(guān)于坐標原點的對稱點的坐標為( 。
A、(-1,0,-1)
B、(1,0,-1)
C、(0,-1,1)
D、(1,0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
sinπx,x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
,有下列4個命題:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),對于一切x∈[0,+∞)恒成立;
③對任意x>0,不等式f(x)≤
k
x
恒成立,則實數(shù)k的取值范圍是[
9
8
,+∞)

④函數(shù)y=f(x)-ln(x-1)有3個零點;
則其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(-1,1)且與直線x-2y+1=0垂直的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,且對任意n∈N*時,點(an,Sn)都在函數(shù)f(x)=-
1
2
x+
1
2
的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
3
2
log3(1-2Sn)+10
,求數(shù)列{bn}的前n項和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱臺的斜高與上、下底面邊長之比為5:2:8,體積為14cm3,則棱臺的高為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α=-4,則cosα與0的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)經(jīng)過選拔的三名學(xué)生甲、乙、丙參加某大學(xué)自主招生考核測試,在本次考核中只有不優(yōu)秀和優(yōu)秀兩個等次,若考核為不優(yōu)秀,則授予0分加分資格;若考核優(yōu)秀,授予20分加分資格.假設(shè)甲、乙、丙考核為優(yōu)秀的概率分別為
2
3
、
2
3
1
2
,他們考核所得的等次相互獨立.
(1)求在這次考核中,甲、乙、丙三名同學(xué)中至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名同學(xué)所得加分之和為隨機變量ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC內(nèi)角A,B,C所對邊長分別為a,b,c成等比數(shù)列,則
sinB+sinC
sinA
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案