已知△ABC的內(nèi)角A,B,C的對(duì)邊a,b,c成等比數(shù)列,則
sinB
sinA
的取值范圍為
5
-1
2
5
+1
2
5
-1
2
,
5
+1
2
分析:把要求的式子整理,首先切化弦,通分,逆用兩角和的正弦公式,根據(jù)三角形內(nèi)角和之間的關(guān)系,最后角化邊,得到要求的范圍既是公比的范圍,用公比表示出三條邊,根據(jù)兩邊之和大于第三邊,得到不等式組,得到結(jié)果.
解答:解:設(shè)三邊的公比是q,三邊為a,aq,aq2
利用正弦定理化簡得:
sinB
sinA
=
b
a
=q,
∵aq+aq2>a,①
a+aq>aq2,②
a+aq2>aq,③
解三個(gè)不等式可得q>
5
-1
2
,0<q<
5
+1
2

綜上有:
5
-1
2
<q<
5
+1
2
,
sinB
sinA
的取值范圍為(
5
-1
2
5
+1
2

故答案為:(
5
-1
2
,
5
+1
2
點(diǎn)評(píng):此題考查了正弦定理,等比數(shù)列的性質(zhì),屬于綜合題目,包括三角函數(shù)的恒等變化,三角形內(nèi)角之間的關(guān)系,一元二次不等式的解法,等比數(shù)列的應(yīng)用,變量的范圍的求解,化歸思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,acosB+bcosA=csin(A-B),且a2+b2-
3
ab=c2
,求角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A、B、C所對(duì)邊的長分別為a、b、c,若ac=5,且
BA
BC
=
5

(1)求△ABC的面積大小及tanB的值;
(2)若函數(shù)f(x)=
2cos2
x
2
+2sin
x
2
cos
x
2
-1
cos(
π
4
+x)
,求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內(nèi)切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設(shè)三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對(duì)應(yīng)的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號(hào)是
①④⑤
①④⑤
(注:把你認(rèn)為是正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C成等差數(shù)列,則cos2A+cos2C的取值范圍是
[
1
2
3
2
]
[
1
2
,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門一模)已知△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c滿足(a+b)2-c2=6且C=60°,則△ABC的面積S=
3
2
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案