設(shè)已知拋物線C的頂點在坐標(biāo)原點,焦點為F(1,0),直線與拋物線C相交于A,B兩點.若AB的中點為(2,2),則直線的方程為_____________

 

【答案】

【解析】

試題分析:拋物線的方程為,,

則有, ,兩式相減得,

所以 ,所以直線的方程為 ,即.

考點:拋物線的簡單性質(zhì)直線的一般式方程

點評:本題主要考查了拋物線的簡單性質(zhì).涉及弦長的中點問題,常用“點差法”設(shè)而不求,將弦所在直線的斜率、弦的中點坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)已知拋物線C的頂點在坐標(biāo)原點,焦點為F(1,0),直線l與拋物線C相交于A,B兩點.若AB的中點為(2,2),則直線ι的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(寧夏海南卷理)設(shè)已知拋物線C的頂點在坐標(biāo)原點,焦點為F(1,0),直線l與拋物線C相交于A,B兩點。若AB的中點為(2,2),則直線l的方程為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

()設(shè)已知拋物線C的頂點在坐標(biāo)原點,焦點為F(1,0),直線l與拋物線C相交于A,B兩點。若AB的中點為(2,2),則直線的方程為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)已知拋物線C的頂點在坐標(biāo)原點,焦點為F(1,0),直線l與拋物線C相交于A,B兩點。若AB的中點為(2,2),則直線的方程為_____________.

查看答案和解析>>

同步練習(xí)冊答案