若定義在R上的函數(shù)的導(dǎo)函數(shù)是,則函數(shù)的單調(diào)遞減區(qū)間是( )
A. B. C. D.
C
【解析】
試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061710003766111071/SYS201306171000511929950403_DA.files/image001.png">在(0,+ )是減函數(shù),所以,為求的單調(diào)遞減區(qū)間,須為增函數(shù)。
由0,得,,
故,,解得,,選C。
考點(diǎn):本題中要考點(diǎn)應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的性質(zhì)。
點(diǎn)評(píng):小綜合題,本題綜合考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的性質(zhì)。注意運(yùn)用“在某區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù);導(dǎo)數(shù)非正,函數(shù)為減函數(shù)”,復(fù)合函數(shù)的單調(diào)性遵循“內(nèi)外層函數(shù),同增異減”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
-2x+b |
2x+1+a |
3 |
2 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
-2x+b |
2x+1+a |
3 |
2 |
5 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com