【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點,求直線與平面所成角的正弦值.

【答案】1)證明見解析;(2

【解析】試題分析:(1),沿折起,使得平面 平面,即可得AB垂直于平面BCD.從而得到結(jié)論.

(2)依題意,可得,又由平面BCD.如圖建立直角坐標系. 求直線與平面所成角的正弦值.等價于求出直線與平面的法向量所成的角的余弦值.寫出相應(yīng)的點的坐標以及相應(yīng)的向量,求出法向量即可得到結(jié)論.

試題解析:(1)因為平面,平面 平面平面所以平面平面所以.

(2)過點在平面內(nèi)作,如圖.(1)平面平面平面所以.為坐標原點,分別以的方向為, , 軸的正方向建立空間直角坐標系.依題意,..設(shè)平面的法向量..得平面的一個法向量.設(shè)直線與平面所成角為,即直線與平面所成角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;

(2)若函數(shù)的圖象上的所有點的橫坐標伸長到原來的倍,所得的圖象與直線交點的橫坐標由小到大依次是,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),函數(shù).

(1)求的單調(diào)遞增區(qū)間;

(2)設(shè),問是否存在極值,若存在,請求出極值,若不存在,請說明理由;

(3)設(shè)是函數(shù)圖象上任意不同的兩點,線段的中點為,直線的斜率為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某水產(chǎn)養(yǎng)殖基地要將一批海鮮用汽車從所在城市甲運至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且運費由水產(chǎn)養(yǎng)殖基地承擔.若水產(chǎn)養(yǎng)殖基地恰能在約定日期(×月×日)將海鮮送達,則銷售商一次性支付給水產(chǎn)養(yǎng)殖基地萬元;若在約定日期前送到,每提前一天銷售商將多支付給水產(chǎn)養(yǎng)殖基地萬元;若在約定日期后送到,每遲到一天銷售商將少支付給水產(chǎn)養(yǎng)殖基地萬元.為保證海鮮新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運送海鮮,已知下表內(nèi)的信息:

統(tǒng)計信息

汽車

行駛路線

不堵車的情況下到達城市乙所需時間(天)

堵車的情況下到達城市乙所需時間(天)

堵車的概率

運費(萬元)

公路

公路

(注:毛利潤銷售商支付給水產(chǎn)養(yǎng)殖基地的費用運費)

)記汽車走公路時水產(chǎn)養(yǎng)殖基地獲得的毛利潤為(單位:萬元),求的分布列和數(shù)學期望

(Ⅱ)假設(shè)你是水產(chǎn)養(yǎng)殖基地的決策者,你選擇哪條公路運送海鮮有可能讓水產(chǎn)養(yǎng)殖基地獲得的毛利潤更多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1b1,b2(a2a1)=b1

(1)求數(shù)列{an}和{bn}的通項公式;

(2)設(shè)cn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,已知是正三角形, 平面的中點, 在棱上,且.

(1)求三棱錐的體積;

(2)求證: 平面;

(3)若中點, 在棱上,且,求證: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述:

是周期函數(shù); 是它的一條對稱軸;

是它圖象的一個對稱中心; 時,它一定取最大值;

其中描述正確的是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2cos,直線l的參數(shù)方程為 (t為參數(shù)),直線l與圓C交于AB兩點,P是圓C上不同于A,B的任意一點.

(1)求圓心的極坐標;

(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:對于實數(shù)和兩定點,在某圖形上恰有個不同的點,使得,稱該圖形滿足“度契合”.若邊長為4的正方形中,,且該正方形滿足“4度契合”,則實數(shù)的取值范圍是__________

查看答案和解析>>

同步練習冊答案