正四棱柱ABCD-A1B1C1D1內(nèi)接于一個球,且底面ABCD邊長為1,高AA1
2
,則A、B兩點的球面距離為( 。
A、π
B、
π
2
C、
π
3
D、
π
6
分析:已知正四棱柱ABCD-A1B1C1D1的底面ABCD邊長為1,高AA1=
2
,它的八個頂點都在同一球面上,那么,正四棱柱ABCD-A1B1C1D1的對角線長為球的直徑,中點O為球心.則易得球的半徑. 根據(jù)球面距離的定義,應先算出球面兩點對球心的張角,再乘以球的半徑即可.
解答:解:已知正四棱柱ABCD-A1B1C1D1的底面ABCD邊長為1,高AA1=
2
,它的八個頂點都在同一球面上,
那么,正四棱柱ABCD-A1B1C1D1的對角線長為球的直徑,中點O為球心.
正四棱柱對角線AC1=2,
則球的半徑為1.
根據(jù)球面距離的定義,可得∠AOB=
π
3
;
則A,B兩點的球面距離為
π
3
•1=
π
3

那么球的半徑是 1;A,B兩點的球面距離為
π
3

故選C.
點評:(1)涉及到多面體與球相關的“切”“接”問題時,關鍵是抓住球心的位置.球心是球的靈魂.
(2)根據(jù)球面距離的定義,應先算出球面兩點對球心的張角,再乘以球的半徑.這是通性通法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

頂點在同一球面上的正四棱柱ABCD-A′B′C′D′中,AB=1,AA′=
2
,則A、C兩點間的球面距離為( 。
A、
π
4
B、
π
2
C、
2
π 
4
D、
2
π 
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖(1),正四棱柱ABCD-A′B′C′D′中,AA′=2AB,則異面直線A′B與AD′所成的角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正四棱柱ABCD-A′B′C′D′中(底面是正方形的直棱柱),側棱AA′=
3
AB=
2
,則二面角A′-BD-A的大小為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

頂點在同一球面上的正四棱柱ABCD-A′B′C′D中,AB=1,AA′=
6
,則A、C兩點間的球面距離為
2
3
π
2
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四棱柱ABCD-A′B′C′D′的外接球直徑為
6
,底面邊長AB=1,則側棱BB′與平面AB′C所成角的正切值為
 

查看答案和解析>>

同步練習冊答案