已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,則x的值為_(kāi)_____.
(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)是第5項(xiàng),
所以
C48
(2x)4(xlgx)4
=1120.
即x(4+4lgx)=1,
所以4+4lgx=0,或x=1
所以x=
1
10
,或x=1,
故答案為:x=1或x=
1
10
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若(1+x)n的展開(kāi)式中,x3的系數(shù)是x的系數(shù)的7倍,求n;
(2)若(ax+1)7(a≠0)的展開(kāi)式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),求a;
(3)已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武昌區(qū)模擬)已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,則x的值為
x=1或x=
1
10
x=1或x=
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)若(1+x)n的展開(kāi)式中,x3的系數(shù)是x的系數(shù)的7倍,求n;
(2)若(ax+1)7(a≠0)的展開(kāi)式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),求a;
(3)已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:填空題

已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,則x的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案